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A Givens Rotation-based QR Decomposition
for MIMO Systems
Wen Fan and Amir Alimohammad

Abstract—QR decomposition is an essential operation in var-
ious detection algorithms utilized in multiple-input mult iple-
output (MIMO) wireless communication systems. This paper
presents a Givens rotation-based QR decomposition for4 × 4

MIMO systems. Instead of performing QR decomposition by
CORDIC algorithms, lookup table (LUT) compression algo-
rithms are employed to rapidly evaluate the trigonometric
functions. The proposed approach also provides greater accuracy
compared to the CORDIC algorithms. QR decomposition is per-
formed by complex Givens rotations cascaded with real Givens
rotations. In complex Givens rotations, a modified triangular
systolic array (TSA) is adopted to reduce the delay units of
the design and hence, reducing the hardware complexity. The
proposed QR decomposition algorithm is implemented in TSMC
90-nm CMOS technology. It achieves the throughput of 53.5
million QR decompositions per second (MQRD/s) when operating
at 214 MHz.

Index Terms—QR decomposition, Givens rotation, lookup table
compression, MIMO detection.

I. I NTRODUCTION

M ULTIPLE-input multiple-output (MIMO) technique has
attracted significant interest due to the substantial in-

crement of system capacity and spectral efficiency. As a reli-
able technology supporting high throughput data transmission,
MIMO has been widely adopted by recent wireless com-
munication standards, such as IEEE 802.11n, IEEE 802.16m
(WiMAX) and 3GPP-LTE [1], [2]. One of the challenges for
MIMO systems is to design a high-throughput and accurate
detector for the receiver. QR decomposition is an essential
operation to convert a MIMO channel into multiple layered
sub-channels and thus, reduce the computational complexity
of MIMO detection. The accuracy of QR decomposition will
directly impact the bit error rate (BER) performance and
symbol detection throughput of MIMO systems significantly.

Three QR factorization methods have been widely used
in MIMO systems: Gram-Schmidt, Householder transforma-
tion, and Givens rotation [3]–[14]. Since the complexity of
Householder transformation is relatively high, related studies
on the QR decomposition architectures are typically classified
into two main categories. One is based on the modified
Gram-Schmidt algorithm (MGS) [3]–[8], which performs QR
decomposition in parallel and requires many norm and division
operations. The other category is based on Givens rotation
and utilizing triangular systolic array architecture [9]–[14],
which implements the rotation operation by the coordinate
rotation digital computer (CORDIC) algorithms. Compared to
MGS, Givens rotation has the advantage of lower hardware
complexity, however, the long latency is the main obstacle of
the Givens rotation approach.

CORDIC algorithms are commonly used to implement
Givens rotation-based QR decomposition for their low hard-
ware complexity. However, the number of iterations will be
large if the system requires high accuracy, which leads to a
relatively long latency. This article intends to utilize alternative
algorithms with greater computational accuracy than CORDIC
algorithms for Givens rotation-based QR decomposition. After
comparing the mean square error (MSE) performance and
arithmetic complexity of the lookup table (LUT) compression,
linear approximation, and CORDIC algorithms, LUT compres-
sion scheme is selected to implement trigonometric functions
in Givens rotation as it has lower computational complexity
than the linear approximation technique and also provides
improved MSE performance compared to the CORDIC-based
solution.

To reduce the hardware complexity, the proposed QR
decomposition approach consists of a complex-valued de-
composition (CVD) followed by a real-valued decomposition
(RVD). The RVD is designed with the triangular systolic array
(TSA) architecture and the CVD is implemented using the
modified TSA architecture. Compared with the conventional
architectures, the proposed scheme reduces the number of
delay units and also shortens the latency of the design.

The rest of this article is organized as follows. In Section
II, the MIMO system model and the important role of QR
decomposition in detection algorithms are briefly reviewed.
Section III describes the complex-valued and real-valued de-
composition algorithms in the proposed design. Implementing
trigonometric functions using our proposed LUT compression
scheme is also presented and compared with the linear approx-
imation and CORDIC-based realizations. In Section IV, the
architectures of complex Givens rotation, real Givens rotation,
and the divider used in the arctangent function are presented
and discussed. The implementation results and comparisons
are provided in Section V. Finally, Section VI makes some
concluding remarks.

II. MIMO S YSTEM MODEL

Consider a spatial multiplexing MIMO system [15] withNT

transmit andNR receive antennas. The equivalent baseband
model of the channel can be described by a complex-valued
NR×NT matrix H. The relation between transmit and receive
signal vectors is can be written as:

y = Hs+ n, (1)

where y = [y1, y2, ..., yNR
]T denotes theNR-dimensional

receive signal vector,s = [s1, s2, ..., sNT
]T is the NT × 1

transmit signal vector, andn = [n1, n2, ..., nNR
]T denotes the



2

NR × 1 noise vector with independent identically-distributed
(i.i.d) zero-mean Gaussian noise variates [16].

QR decomposition is an essential preprocessing unit in
various MIMO detection techniques, such as zero-forcing,
sphere decoding, and K-best detection algorithms [17]–[20].
By using QR decomposition of the channel matrixH = QR,
where Q is a unitary matrix andR is an upper triangular
matrix, the detected signal vector̂s can be expressed as
follows:

ŝ = argmin ‖y − Hs‖2

= argmin ‖QHy − Rs‖2. (2)

In efficient MIMO detection schemes, such as the K-
best algorithm, sorting of the expanded traversal paths is an
important step. If the CVD system model is chosen, additional
multiplication and addition will be necessary before sorting
can take place. In order to obtain the best candidates without
a complicated sorting step, many MIMO detection schemes
utilize the RVD system model [18], in which (1) can be
expressed as:

[

Re{y}
Im{y}

]

=

[

Re{H} −Im{H}
Im{H} Re{H}

] [

Re{s}
Im{s}

]

+

[

Re{n}
Im{n}

]

, (3)

whereRe{·} and Im{·} denote the real and imaginary parts,
respectively. In this case, the dimension of the real-valued
channel matrix becomes2NR× 2NT . For the MIMO systems
with a relatively large number of transmit and receive antennas
(e.g.,4×4 or more), it is shown in [11] that the direct RVD of
the channel matrix will be more complicated than the CVD.
However, MIMO detection will be computationally-intensive
without RVD, especially for high order modulation schemes.
One efficient approach is to first perform the CVD of the
channel matrix and then perform the RVD of the complex
triangular matrix R [11]. This approach is applied in the
proposed QR decomposition scheme and is discussed in the
following section.

III. PROPOSEDQR DECOMPOSITIONALGORITHM

A. Complex-Valued Decomposition

Givens rotation technique zeros one element of a matrix
at a time by applying a two-dimensional rotation. Therefore,
rotation matrix plays an important role on the performance of
QR decomposition. The idea of CVD-based Givens rotation
can be illustrated using the polar representation. Consider a
4× 4 complex-valued matrix

H =









|h11|ejθ11 h12 h13 h14

|h21|ejθ21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44









, (4)

where|hi1| andθi1 (i = 1,2) represent the magnitude and the
angle of the matrix entries, respectively, andj =

√
−1. The

Givens rotation matrixG1 targets at eliminatingh21 by h11

and can be expressed as:

G1 =









c s 0 0
−s∗ c∗ 0 0
0 0 1 0
0 0 0 1









. (5)

The complex triangular matrixR and the complex unitary
matrix Q can be obtained as:

R = G6G5G4G3G2G1H,

Q = (G6G5G4G3G2G1)
H , (6)

whereG2, . . . ,G6 are rotation matrices to zeroh31, h41, h32,
h42 andh43, respectively, and(·)H denotes the Hermitian of
a complex matrix. Thec and s parameters can be calculated
using the three-angle complex rotation (Three-ACR) technique
[11], [21], where:

c =
h∗

11
√

|h11|2 + |h21|2
= cos θae

−jθ11 ,

s =
h∗

21
√

|h11|2 + |h21|2
= sin θae

−jθ21 ,

θa = arctan

( |h21|
|h11|

)

. (7)

In order to avoid the square root operation in calculatingθa,
(7) can be further optimized as:

θa = arctan

∣

∣

∣

∣

Re{h21}
cos θ21

× cos θ11
Re{h11}

∣

∣

∣

∣

. (8)

After rotation, the rotated matrixG1H becomes

G1H =









h
(1)
11 h

(1)
12 h

(1)
13 h

(1)
14

0 h
(1)
22 h

(1)
23 h

(1)
24

h31 h32 h33 h34

h41 h42 h43 h44









, (9)

where h
(k)
ij denotes thehij entry of the matrix afterk-th

rotation. An important feature of the Three-ACR technique is
that it causes the triangular matrixR to have only real diagonal
elements. Therefore, an additional rotation step is required to
remove the imaginary part ofh(1)

22 in G1H. The additional
rotation matrix can be written as:

G′

1 =









1 0 0 0

0 e−jθ
(1)
22 0 0

0 0 1 0
0 0 0 1









. (10)

Another approach to calculate thec ands parameters is the
two-angle complex rotation (Two-ACR) [21], where

c = cos θa,

s = sin θae
jθb ,

θb = θ11 − θ21. (11)

The Three-ACR technique based on the architecture of TSA
reduces the latency and area by using the same hardware
resources of the CORDIC modules, but the throughput will
be lower than that of the Two-ACR. Three-ACR saves four
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TABLE I
ARITHMETIC COMPLEXITY OF THE THREE-ANGLE COMPLEX ROTATION

AND TWO-ANGLE COMPLEX ROTATION SCHEMES

Two-ACR Three-ACR

NT ×NR 2 × 2 4 × 4 2 × 2 4 × 4

Multiplication 18 54 26 74

Addition 6 24 12 42

Arctangent 3 4

Sine 3 4

Cosine 3 4

Fig. 1. Real-valued decomposition matrix̃R for a 4× 4 MIMO system.

rotation stages in the RVD section compared to Two-ACR as
it makes the complex-valued triangular matrixR have only
real-valued diagonal elements. However, Three-ACR adds six
additional rotations in the CVD section according to (6)
and (10), which implies a longer latency and a larger area.
Furthermore, both parametersc and s calculated with the
Three-ACR technique are complex, while the parameterc
calculated with the Two-ACR approach is real and therefore,
the Two-ACR has lower arithmetic complexity than the Three-
ACR technique for the LUT compression-based designs.

Table I shows the arithmetic complexity of the Three-ACR
and Two-ACR approaches. As shown in Table I, the Two-ACR
requires fewer operations than Three-ACR. For4× 4 MIMO
systems or systems with more antennas, the complexity of the
Two-ACR in (11) does not increases as much as that of Three-
ACR. Therefore, we use the Two-ACR scheme to computec
ands parameters in the rotation matrices.

B. Real-Valued Decomposition

Fig. 1. shows the real-valued matrix̃R, which is expanded
from the complex-valued matrixR. The task for RVD is to
eliminate the elements in the lower-left section of the matrix
R̃, as shown by the dashed lines in Fig. 1. To guarantee the
minimum number of operations, the processing sequence is
important [11]. For example, for4× 4 matrices, the elements
of R̃ should be nulled iñR51, R̃62, R̃73, R̃84, R̃52, R̃63, R̃74,
R̃53, R̃64, R̃54 order. The RVD ofR andQ can be written as:

RRVD = G̃R̃,

QRVD = G̃
H

Q̃, (12)

Fig. 2. Architecture of the LUT compression algorithm.

where G̃ is the real-valued Givens rotation matrix and̃Q is
the real-valued2NR × 2NT matrix expanded fromQ.

C. Lookup Table Compression Algorithm

In the design of Givens rotation-based QR decomposition,
the chosen vector rotation technique has a direct impact on
the throughput and the hardware complexity of the design.
CORDIC technique has been extensively applied in the Givens
rotation-based QR decomposition algorithms [9]–[14], [22].
CORDIC has the advantage of implementing vector rotations
using only adders and shifters, however, due to the iterative
nature of CORDIC algorithms, it is challenging to achieve
high throughputs and high accuracies. The LUT compression
and linear approximation approaches are significantly more
accurate than the CORDIC technique when the same word-
lengths are utilized. This will be briefly discussed here.

The LUT compression technique is an effective approach
for approximating trigonometric functions utilizing verysmall
read-only memories (ROMs) and simple arithmetic circuitries.
The architecture of the LUT compression method is shown in
Fig. 2. The principle of the LUT compression technique is
to decompose the input signalx ∈ [0, 1) into K + 1 non-
overlapping sub-words,x0, x1, . . . , xK , each withq0, q1, . . . ,
and qK bits, respectively. The interval [0,1) ofx has been
divided into2q0 subintervals.x0 represents the starting point
of each subinterval andx1 + . . . + xK is the offset in each
interval betweenx andx0. A piecewise linear approximation
of f(x) can be expressed as:

f(x) = f(x0 + x1 + · · ·+ xK)

≈ A(x0) +B(x0)(x1 + · · ·+ xK)

= A(x0) +B(x0)x1 + · · ·+B(x0)xK , (13)

The termB(x0)x1 can be approximated asB1(α1)x1, where
α1 is the sub-word ofx0 including itsp1 ≤ q0 most significant
bits (MSBs). Likewise, the termB(x0)x2 is approximated as
B2(α2)x2, whereα2 is a sub-word ofx0 including its p2 ≤
p1 MSBs. Similar approximations can be conducted on the
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TABLE II
ARITHMETIC COMPLEXITY OF DIFFERENTALGORITHMS FORTHREE TRIGONOMETRICFUNCTIONS

LUT compression Linear approximation CORDIC

Functions sin/cos arctan sin/cos arctan sin/cos arctan

WL.WF I : 12.9 I : 14.9 I : 12.9 I : 14.9 I : 12.9 I : 14.9

O : 11.9 O : 12.9 O : 11.9 O : 12.9 O : 11.9 O : 12.9

Parameters
q0 = 6 q0 = 6 s = 128 s = 128 n = 9 n = 9

q1 = 3 q1 = 3

p1 = 2 p1 = 2

ROM size (bits) 464 464 2304 2304 117 117

Mul. - - 1 1 - -

Add. 1 2 1 1 12 24

Div. - 1 - 1 - -

Shifter - - - - 8 16

B(x0)xi, i = 3, . . . ,K, terms. Therefore, the expression (13)
can be approximated as:

f(x) ≈ A(x0) +B1(α1)x1 + · · ·+BK(αK)xK (14)

whereA(x0) can be realized with a ROM with2q0 entries,
and is called table of initial values (TIV).B(αi)xi can be
implemented withK ROMs with 2pi+qi entries each, which
is called table of offsets (TO) [23]. The three trigonometric
functions, sine, cosine, and arctangent, can be computed by
conditionally adding or subtracting the values in TOs from
the selected values in TIV.

The size of ROMs can be reduced to half by making the
TOs symmetric. Thenf(x) in (14) can be written as:

f(x) ≈ Ã(x0) + B1(α1)(x1 −
δ1
2
) + · · ·

+ BK(αK)(xK − δK
2
),

whereδi is the weight of the least significant bit (LSB) of the
i-th sub-word, and can be written as:

δi = (2qi − 1)2−εi ,

where

εi =

i
∑

j=0

qj .

The coefficients stored in TIV and TOs can then be calculated
by minimizing the maximum approximation error as [23]:

Ã(x0) =
f(x0) + f(x0 +∆0)

2
,

Bi(αi) =
f(αi + δi)− f(αi) + f(αi + δi + σi)− f(αi + σi)

2δi
,

whereÃ(x0) is the content of the TIV and

σi = 2−pi − 2qi−εi ,

∆0 =

K
∑

j=1

δj .

The content of thei-th TO, i = 1, . . . ,K, can be computed
as:

TOi(αi, xi) = Bi(αi)(xi + 2−εi−1).

Linear approximation is another approach to evaluate var-
ious trigonometric functions accurately. It is based on the
idea of segmenting the interval[0, 1) of the input signalx
into s = 2u sub-intervals. Theu MSBs of x encode the
segment starting pointxk and are used to address the LUTs
that store the linear function coefficients. The remaining bits
of x represent the offsetx−xk [24]. The linear approximation
of a trigonometric function can be calculated as:

f(x) = nk +mk(x− xk), k = 1, 2, . . . , s, (15)

wherenk andmk are constants and linear coefficients, respec-
tively, xk ≤ x < xk+1, x1 = 0, andxs+1 = 1. The constant
coefficients can be calculated by settingx = xk and the linear
coefficients can be obtained by settingx = (xk + xk+1)/2,
wherexk = (k − 1)/s. They are expressed as:

nk = f(
π

4
xk),

mk = 2s

[

f(
π

4
× 2k − 1

2s
)− nk

]

. (16)

Both LUT compression and linear approximation techniques
can be employed to evaluate the arctangent, sine, and cosine
functions in the QR decomposition algorithm. The three
trigonometric functions can be expressed as:

farctan/(
π

4
) = (arctan y)/(

π

4
) = a,

fsin = sin(
π

4
a),

fcos = cos(
π

4
a), (17)

where a ∈ [0, 8) and y ∈ (0, 1). Note that onlyarctan,
sin and cos values are required to be calculated with the
rotation angles within[0, π/4). If the rotation angles are within
[π/4, 2π), the trigonometric function values can be obtained
by optionally performing input/output complements and the
output swap operations. For example, if the rotation anglesare
within [π/4, π/2], thena ∈ [1, 2) and the three trigonometric
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Fig. 3. Sine function errors of the three approaches with therotation angle
within (0, π/4).

Fig. 4. Cosine function errors of the three approaches with the rotation angle
within (0, π/4).

Fig. 5. Arctangent function errors of the three approaches with the input
within (0, 1).

functions can be expressed as:

farctan/(
π

4
) = (

π

2
− arctan

1

y
)/(

π

4
) = 2− a,

fsin = cos[
π

4
(2− a)],

fcos = sin[
π

4
(2− a)]. (18)

By scaling the rotation angle’s range from[0, 2π) to
[0, 8) only 3 MSBs ofa are required to control the octants
instead of using the whole word-length of the angle. For QR
decomposition, the result of the arctangent function will be
the input signal to the sine or cosine functions and hence, itis
not necessary to perform scaling by hardware. The scaling can
be done in software when computing the coefficients stored in
LUTs. Therefore, the hardware cost is reduced by scaling the
range of the rotation angle.

Table II shows the arithmetic complexity of the LUT
compression, linear approximation, and CORDIC approaches
when implementing trigonometric functions in fixed-point
format. The word-length (WL) and fraction length (WF) of
the inputs and outputs of the trigonometric functions are also
listed in Table II. The parameters of the LUT compression

Fig. 6. MSE performances versus fractional word-lengths for three different
approaches.

Fig. 7. Proposed TSA architecture for the complex-valued Givens rotation.

and the linear approximation approaches are set such that their
mean square errors (MSEs) are relatively close. The MSEs of
the CORDIC approaches are significantly larger than those of
the LUT compression and the linear approximation schemes,
independent of the parameters’ values. If the WF is fixed, even
increasing the number of iterations to more than nine, the MSE
performance of CORDIC will not be improved because after
nine iterations, there will not be any rotations. Therefore, the
number of iterations in CORDIC algorithms is set to nine.
According to the results in Table II, the LUT compression
method requires considerably smaller ROMs than the linear
approximation and without requiring any multipliers. Although
it uses one more adder to implement the arctangent function
compared to the linear approximation scheme, the overall
arithmetic complexity of the LUT compression technique
is significantly lower than that of the linear approximation
method. CORDIC utilizes smaller ROMs than those in the
LUT compression scheme and it does not need dividers,
however, it uses many adders and shifters.

Figs. 3, 4, and 5 show the absolute values of the approx-
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Fig. 8. Architecture of the complex processing element (CPE).

imation errors for three trigonometric functions using three
different discussed schemes. For sine and cosine functions, the
rotation angles are within(0, π/4) and for arctangent function,
the input signal is within(0, 1), which means the output
angle of the arctangent function is within the(0, π/4) interval.
Figs. 3, 4, and 5 demonstrate that the approximation errors
of the LUT compression and linear approximation techniques
are considerably smaller than the approximation errors of
the CORDIC scheme. The MSE performance of the three
approaches with various fractional bit-widths is shown in Fig.
6. For the sine, cosine and arctangent functions, the CORDIC
algorithm has the worst MSE performance among the three.
For sine and cosine functions, the MSE performance of the
LUT compression and linear approximation schemes are close.
However, LUT compression provides the best MSE perfor-
mance for implementing the arctangent function. Considering
the arithmetic complexity and the MSE performance, the LUT
compression approach is chosen for implementing the three
trigonometric functions in the proposed QR decomposition.

IV. A RCHITECTUREDESIGN OFQR DECOMPOSITION

We utilize our proposed QR decomposition architecture in a
4×4 MIMO system. In order to achieve high throughputs, one
column of the channel matrixH is processed in every clock
cycle and therefore, the proposed architecture performs QR
decomposition of a4 × 4 matrix over four clock cycles. The
required projection ofQHy in MIMO detection algorithms is
then generated in one additional clock cycle.

A. Architecture of the Complex-Valued Givens Rotation

The conventional TSA architecture has been previously used
for QR decomposition [14], [21]. The TSA architecture was
improved in [11] by reducing the delay units, which is also
adopted in our design for complex-valued Givens rotation, as
shown in Fig. 7. It performs complex-valued Givens rotation
in four stages, while conventional TSA architecture requires
five stages. Each complex processing element (CPE) zeros one
entry in the left-bottom triangular section of theH matrix. The
outputsr1j , r1j , r3j andr4j are four rows of complex-valued
triangular matrixR. In the first stage,h21 andh31 are zeroed
by h11 andh41, respectively, and four rows of the matrix are
rotated by the rotation matrix accordingly, expressed ash

(1)
ij

Fig. 9. Proposed architecture for the real-valued Givens rotation.

(i, j = 1, 2, 3, 4). In the second stage,h(1)
41 andh(1)

32 are zeroed
by h

(1)
11 and h

(1)
22 . In the third stage,h(2)

42 is zeroed byh(2)
22 ,

andh(3)
43 is zeroed byh(3)

33 in the final stage.
The detailed architecture of the CPE is shown in Fig. 8.

It executes the complex-valued Givens rotation in two steps.
In the first step, the rotation matrix is built by calculatingthe
c and s parameters according to equations (5), (8) and (11),
wherec = cos θa and s = sin θae

jθb . The critical operations
for calculating the rotation matrix are arctangent, cosineand
sine functions. These operations are implemented with the
LUT compression method using the architecture shown in
Fig. 2, where we chooseq0 = 6, q = 3, and p = 2. In
the second step, the channel matrixH is multiplied by the
generated rotation matrixG to zero one of its element. Since
c is real-valued, the multipliers and adders in this part are half-
complex (the ones with shadows in Fig. 8), which have lower
complexity than the complex-valued multipliers and adders.
While the traditional complex multipliers consist of four real
multipliers and two adders, the half-complex multipliers in
Fig. 8. use two real multipliers and no adders.

B. Architecture of the Real-Valued Givens Rotation

The architecture of the real-valued Givens rotation is shown
in Fig. 9, whereaij and rij , i = 1, . . . , 8, are the entries of
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TABLE III
IMPLEMENTATION RESULTS OFDIFFERENTQR DECOMPOSITIONTECHNIQUES

[3] [4] [6] [9] [11] [25] [26] This work
Algorithm MGS Interpolation-based MGS GR and Householder GR GR GR GR

Matrix 4× 4 2× 2 ∼ 4× 4 4× 4 4× 4 8× 8 4× 4 4× 4 8× 8
dimension Complex Complex Complex Complex Real Complex Complex Real
Technology 0.18-µm 90-nm 0.18-µm 0.13-µm 0.18-µm 90-nm 90-nm 90-nm

Max. freq. (MHz) 400 140 162 278 100 125 116 214
Processing cycles 35 4 104 40 4 4 4 4
Gate count (K) 32.6 318 61.8 36 152 115 437.5 262

Throughput (MQRD/s) 11.4 35 1.6 7 25 31.4 29 53.5
Normalized throughput1 22.8 35 3.2 10 50 31.4 29 53.5

Gate efficiency2 0.699 0.110 0.052 0.269 0.329 0.273 0.066 0.20
1 Throughput× (Technology/90-nm)/(64/n2 ), wheren = 2N for N ×N complex matrices andn = N for real matrices.
2 Normalized throughput/ Gate count.

real-valued matrix̃R for RVD and the triangular matrixRRV D

after RVD, respectively. The real processing element (RPE)
has a similar, but simpler architecture to that of a CPE. It only
uses one arctangent, one cosine, and one sine function to build
the rotation matrix and uses four real multipliers and two real
adders to implement the matrix rotation operation. The entries
in the lower left corner of the8×8 matrix R̃, built by the CVD
of R, are zeroed in four stages. In the first stage, only the left
four columns of the matrix are required to be computed. The
four columns on the right of the matrix can be derived by the
left part according to the relationship in Fig. 1, which can be
expressed asri,j = −ri+4,j−4, i = 1, . . . , 4, j = 5, . . . , 8, and
ri,j = ri−4,j−4, i, j = 5, . . . , 8.

C. Datapath of the Divider

Divider is an important unit in the arctangent function,
which directly impacts the latency and area of the system
significantly. Higher-radix dividers compute more bits per
iteration, so they are faster, at the expense of a larger area.
Lower-radix dividers can be designed with smaller area, but
they are slow as they compute fewer bits per iteration. In
the proposed design, division is performed in radix-4, which
computes two bits per iteration for a moderate speed and its
relatively small area utilization [27].

The divider is designed with five pipeline stages, as shown
in Fig. 10. Each stage processes two iterations.d, x, w and
Q are divisor, dividend, remainder and quotient, respectively,
and qj , j = 1, 2, ..., 6, denotes the redundant digit set of
{−2,−1, 0, 1, 2}. Normalizer is used to scaled into the range
of [0.5, 1). By setting the initial value of the residual to
x/4, the final quotient will be four times of the obtained
quotient. Four MSBs of the normalized divisor are used to
select the boundary of the digit set. Quotient digit selection is
implemented with LUTs. The next residual will be calculated
aswj+1 = 4wj − qj+1 × d. 4wj can be implemented by left-
shifting two bits ofwj . The logic between the second and the
fifth pipeline stage is not shown in Fig. 10 as is the same
logic used betweenReg1 andReg2. The final quotient can be
derived by an on-the-fly conversion of theqj [27].

V. I MPLEMENTATION RESULTS AND COMPARISONS

The proposed Givens rotation-based QR decomposition
architecture is designed, simulated in floating-point and fixed-
point representations, implemented and verified. The word-

Fig. 10. Datapath of the radix-4 divider.

lengths of the signals in the QR decomposition architectureare
chosen based on the fixed-point simulation results of differ-
ent MIMO detection algorithms utilizing various modulation
schemes. Assume that the channel matrixH is perfectly known
at the receiver. For i.i.d. channels with additive White Gaussian
noise (AWGN) model at the receiver, five bits are allocated to
the integer part of the channel matrix entries. The fixed-point
simulations are performed for different fractional bit-widths of
the variables, which impacts the accuracy of the results.

The BER performance of a 64-QAM modulated4×4 MIMO
system using the K-best detection algorithm (K = 10) and
for different word-lengths are shown in Fig. 11. According to
the simulation results, the BER performance starts to degrade
significantly with 8 bits fraction at 20 dB signal-to-noise ratio
(SNR). Fig. 12 shows the symbol error rate (SER) performance
of a 16-QAM modulated4×4 MIMO system with zero-forcing
(ZF) detection. In this case, the SER performance does not
degrade much as long as 9 bits are used for the fractional
part of the signals. Therefore, the QR decomposition can be
reliably designed with 14 bits (5 bits for the integer part and
9 bits for the fractional part) either employed in the K-best
or ZF detection algorithms. In Fig. 13, the BER performance
of the LUT and CORDIC scheme for a 64-QAM modulated
4 × 4 MIMO system using K-best detection technique is
shown. Both the LUT compression and CORDIC schemes
are with the word-length of 9 bits. The BER performance of
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Fig. 11. The BER performance of the fixed-point simulations for a 4 × 4
MIMO system utilizing 64-QAM modulation and K-best detection technique
for different word-lengths.

Fig. 12. The SER performance of the fixed-point simulations for a 4 × 4
MIMO system utilizing 16-QAM modulation and ZF detection technique for
different word-lengths.

the LUT compression scheme is better than CORDIC-based
implementation when the SNR is larger than 30 dB. Fig. 13
proves again that the LUT compression algorithm is more
accurate than the CORDIC scheme.

The proposed QR decomposition architecture is synthesized
in TSMC 90-nm technology. The gate count is about 262K
and it can operate at 214 MHz. This architecture can decom-
pose a new4 × 4 complex-valued matrix every four clock
cycles. Therefore, it achieves the throughput of 53.5 MQRD/s.
The implementation results of our work are compared with
several other published works in Table III. Our design and
the designs in [4], [11], [25], [26] can perform a new QR
decomposition operation every four clock cycles, however,our
design has the highest throughput. The hardware complexity
of our QR decomposition is lower than the design in [4].
Although the designs in [3], [6], [9], [25] have smaller gate
counts than the proposed scheme, their throughputs and nor-
malized throughputs are relatively low. Both the proposed QR

Fig. 13. The BER performance of the LUT compression and CORDIC
approaches for a4 × 4 MIMO system utilizing 64-QAM modulation and
K-best detection technique.

decomposition and the design in [11] support4 × 4 complex
matrix decompositions and also8 × 8 real matrix decompo-
sitions, which simplify the sorting operation if utilized in the
K-best or the sphere decoding MIMO detection algorithms
[28], [29]. Although [11] has a fewer gate count than ours,
the proposed design provides an improved accuracy, which has
been demonstrated in Fig. 3 to Fig. 6. With a greater accuracy
(i.e., lower error rate for 25∼35 dB SNR), transmit signal
power can be scaled down as long as the target error rate can
be supported. According to the implementation results in Table
III, the proposed QR decomposition can be used in MIMO
systems requiring high throughputs and greater accuracy with
moderate hardware complexity.

VI. CONCLUSION

A high throughput and accurate QR decomposition archi-
tecture for4 × 4 MIMO systems was proposed. Instead of
using traditional CORDIC algorithms to implement the phase
calculations and rotations, we employed the LUT compression
method for approximating trigonometric functions rapidly,
which also provides improved mean square error (MSE)
performance compared to CORDIC algorithms. In addition,
two-angle rotation was selected for complex Givens rotations
as it has lower arithmetic complexity than three-angle rotation.
The proposed Givens rotation-based QR decomposition archi-
tecture was implemented using TSMC 90-nm technology. It
can operate at 214 MHz and it achieves the throughput of
53.5 MQRD/s. The implementation results indicate that the
proposed QR decomposition approach has great potential for
applications in MIMO wireless systems by achieving a higher
throughput and improved accuracy compared to CORDIC-
based implementations.

REFERENCES

[1] E. Dahlman, S. Parkvall, and J. Skold,4G LTE/LTE-Advanced for
Mobile Broadband. Elsevier Ltd., 2011.

[2] S. Sesia, I. Toufik, and M. Baker,LTE-The UMTS Long Term Evolution:
From Theory to Practice. John Wiley & Sons Ltd., 2009.



9

[3] R. C-H Changet al., “Iterative QR decomposition architecture using
the modified Gram-Schmidt algorithm for MIMO systems,”IEEE Trans.
Circuits Syst. I, vol. 57, no. 5, pp. 1095–1102, 2010.

[4] P-L Chiu et al., “Interpolation-based QR decomposition and channel
estimation processor for MIMO-OFDM system,”IEEE Trans. Circuits
Syst. I, vol. 58, no. 5, pp. 1129–1141, 2011.

[5] Y. Miyaoka, Y. Nagao, and M. K. et al., “Sorted QR decomposition
for high-speed MMSE MIMO detection based wireless communication
systems,” inProc. IEEE Int. Symp. Circuits. Syst., 2012, pp. 2857–2860.

[6] P. Luethi et al., “Gram-Schmidt-based QR decomposition for MIMO
detection: VLSI implementation and comparison,” inProc. IEEE Asian-
Pacific Conference on Circuits and Systems, 2008, pp. 830–833.

[7] C. K. Singh, S. H. Prasad, and P. T. Balsara, “VLSI architecture for ma-
trix inversion using modified Gram-Schmidt based QR decomposition,”
in Proc. Int. Conf. VLSI Design, 2007, pp. 836–841.

[8] P. Salmela, A.Burian, H. Sorokin, and J. Takala, “Complex-valued QR
decomposition implementation for MIMO receivers,” inProc. IEEE Int.
Conf. Acoustics, Speech, and Signal Process, 2008, pp. 1433–1436.

[9] M. Shabany, D. Patel, and P. G. Gulak, “A low-latency low-power QR-
decomposition ASIC implementation in 0.13 um CMOS,”IEEE Trans.
Circuits Syst. I, vol. 60, no. 2, pp. 327–340, 2013.

[10] D. Patel, M. Shabany, and P. G. Gulak, “A low-complexityhigh-speed
QR decomposition implementation for MIMO receivers,” inProc. IEEE
Int. Symp. Circuits. Syst., 2009, pp. 33–36.

[11] Z.-Y. Huang and P.-Y. Tsai, “Efficient implementation of QR decompo-
sition for Gigabit MIMO-OFDM systems,”IEEE Trans. Circuits Syst.
I, vol. 58, no. 10, pp. 2531–2542, 2011.

[12] M.-W. Lee, J.-H. Yoon, and J. Park, “High-speed tournament Givens
rotation-based QR decomposition architecture for MIMO receiver,” in
Proc. IEEE Int. Symp. Circuits. Syst., 2012, pp. 21–24.

[13] J-Y Wanget al., “A 2x2 - 8x8 sorted QR decomposition processor for
MIMO detection,” inProc. IEEE Asian Solid-State Circuits Conference,
2010, pp. 1–4.

[14] Z. h Liu, K. Dickson, and V. McCanny, “Application-specific instruction
set processor for SoC implementation of mordern signal processing
algorithms,” IEEE Trans. Circuits Syst. I, vol. 52, no. 4, pp. 755–765,
2005.

[15] A. Paulraj, R. Nabar, and D. Gore,Introduction to Space-Time Wireless
Communications. Cambridge University Press, 2003.

[16] J. G. Proakis,Digital Communications. 4th ed., McGraw-Hill, 2001.
[17] T.-H. Liu, “Comparisons of two real-valued MIMO signalmodels and

their associated ZF-SIC detectors over the Rayleigh fadingchannel,”
IEEE Trans. Wireless Commun., vol. 12, no. 12, pp. 6054–6066, 2013.

[18] M. Shabany and P. G. Gulak, “A 675 Mbps,4 × 4 64-QAM K-best
MIMO detector in 0.13 um CMOS,”IEEE Trans. Very Large Scale
Integr. Syst., vol. 20, no. 1, pp. 135–147, 2012.

[19] S. Mondal et al., “Design and implementation of a sort-free K-best
sphere decoder,”IEEE Trans. Very Large Scale Integr. Syst., vol. 18,
no. 10, pp. 1497–1501, 2010.

[20] C.-A. Shen and A. Eltawil, “A radius adaptive K-best decoder with early
termination: algorithm and VLSI architecture,”IEEE Trans. Circuits
Syst. I, vol. 57, no. 9, pp. 2476–2486, 2010.

[21] A. Maltsevet al., “Triangular systolic array with reduced latency for QR-
decomposition of complex matrices,” inProc. IEEE Int. Symp. Circuits.
Syst., 2006, pp. 385–388.

[22] Y.-T. Hwang and W.-D. Chen, “Design and implementationof a high-
throughput fully parallel complex-valued QR factorisation chips,” IET
Circuits, Devices, and Systems, vol. 5, no. 5, pp. 424–432, 2011.

[23] A. G. M. Strollo, D. D. Caro, and N. Petra, “A 630 MHz, 76 mW
direct digital frequency synthesizer using enhanced ROM compression
technique,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 350–360,
2007.

[24] D. D. Caro and A. G. M. Strollo, “High-performance direct digital fre-
quency synthesizers using piecewise-polynomial approximation,” IEEE
Trans. Circuits Syst. I, vol. 52, no. 2, pp. 423–337, 2005.

[25] T.-H. Liu, C.-N. Chiu, P.-Y. Liu, and Y.-S. Chu, “Block-wise QR-
decomposition for the layered and hybrid Alamouti STBC MIMO
systems: algorithms and hardware architectures,”IEEE Trans. Signal
Process., vol. 62, no. 18, pp. 4737–4747, 2014.

[26] W.-Y. Chen, D. Guenther, and C.-A. S. et. al., “Design and implementa-
tion of a low-latency, high-throughput sorted QR decomposition circuit
for MIMO communications,” inin Proc. IEEE Asian Pacific Conf. on
Circuits Syst., 2016, pp. 277–280.

[27] M. D. Ercegovac and T. Lang,Division and Square Root: Digit Recur-
rence Algorithms and Implementations. Kluwer Academic, 1994.

[28] A. Burg and M. Borgmann and M. Wenk and M. Zellweger and
W. Fichtner and H. Bolcskei, “VLSI implementation of MIMO detection
using the sphere decoding algorithm,”IEEE J. Solid-State Circuits,
vol. 40, no. 7, pp. 1566–1577, 2005.

[29] M. Myllyla, J. R. Cavallaro, and M. Juntti, “Architecture design and
implementation of the metric first list sphere detector algorithm,” IEEE
Trans. Very Large Scale Integr. Syst., vol. 19, no. 5, pp. 895–899, 2011.


