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A Two-Dimensional Sorting Algorithm for
High-Throughput K-best MIMO Detection

Wen Fan and Amir Alimohammad

Abstract—This brief presents a novel two-dimensional parallel
sorting algorithm for high-throughput K-best detectors ut ilized in
multiple-input multiple-output (MIMO) systems. The propo sed
sorting algorithm enhances the throughput by sorting a data
set in parallel and avoids the relatively long latency of the
traditional algorithms. This is especially important in MI MO
systems utilizing high-order modulation schemes. We used our
sorting algorithm in a K-best detector with variable K values at
different layers of the search tree, which improves the bit error
rate performance and reduces the computational complexity
significantly. The detector using our sorting algorithm is designed
and implemented in TSMC 90-nm CMOS technology for 4× 4

64-QAM MIMO systems. Operating at 200 MHz, the detector’s
throughput is 1.2 Gbps. Its equivalent gate count is 182 K.

I. I NTRODUCTION

T HE K-best detection algorithm has been widely con-
sidered as a promising technique for multiple-input

multiple-output (MIMO) systems as it provides a near-optimal
performance with a significantly lower computational com-
plexity compared to maximum likelihood (ML) detection [1]–
[6]. In a spatial multiplexing MIMO system withNT transmit
antennas andNR receive antennas, the real-valued system
model can be written asy = Hs + n, wherey denotes the
2NR × 1 received signal vector,H denotes the2NR × 2NT

channel matrix,s denotes the2NT × 1 transmitted signal
vector, andn is a 2NR × 1 noise vector with independent
identically distributed circularly-symmetric complex Gaussian
components with zero mean and unit variance. The task of the
MIMO detector is to estimate the symbol vectors from the
received signal vectory. By performing QR decomposition
on the channel matrixH = QR, an estimatês for each
transmitted space-time (ST) symbols can be rewritten as:

ŝ = argmin
s∈Ω2NT

‖QHy −Rs‖2 = argmin
s∈Ω2NT
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whereΩ is the set of real-valued constellation points,Q and
R are 2NR × 2NT unitary and upper triangular matrices,
respectively,ŷi is the i-th element of vector̂y = QHy, rij
is the entry in thei-th row andj-th column of the matrixR,
and sj is the j-th element of the vectors. The minimum is
sought over all possible real-valued2NT -element ST symbols
s ∈ Ω2NT . The K-best algorithm traverses the search tree
from the root to leaves by expanding the K-best candidates
from the upper layers. For aM -QAM MIMO system,K
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path metrics should be computed in each layer. The partial
Euclidean distance (PED)Ti
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for the s(i) tree node can
be computed recursively by traversing down from the2NT -
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can be calculated as:
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TheK
√
M children are sorted in an increasing order of their

PEDs and the K-best ones are chosen for the next layer. The
algorithm finds the smallest PED at the last layer and returns
the path of the tree with the smallest PED.

The choice of sorting algorithm has a significant impact
on the computational complexity and throughput of the K-
best detector, especially for the MIMO systems utilizing
higher orders modulations. Two popular sorting algorithms,
i.e. bubble sort [1], [7], [8] and distributed sorting [2]–[4],
[9], have been used in the K-best detectors. Bubble sort is the
most straightforward approach by repeatedly stepping through
the list of data elements to be sorted, comparing each pair
of adjacent items, and swapping them if they are in the
incorrect order. Bubble sort is not particularly efficient as
its average computational complexity increases quadratically
with the number of data elements. Distributed sorting divides
the elements to be sorted into a number of groups and then
sorts each group separately. Distributed sorting providesa
lower computational complexity and requires a shorter time
to sort a list of data elements compared to bubble sort.
Other sorting algorithms, such as dual-heap sort [10] and
merge sort [5], have also been used in the K-best detection
scheme. These previously utilized sorting algorithms in the
published K-best detectors are one-dimensional, which may
result in a relatively long latency and low throughputs when
utilized in MIMO systems with high-order modulations. We
propose a two-dimensional (2-D) parallel sorting algorithm for
high-throughput K-best detectors. The proposed 2-D sorting
also reduces the size of the storage elements significantly by
decreasing the number of elements in the data set after each
sorting stage.

The rest of this brief is organized as follows. Section II
explains the proposed sorting algorithm. In Section III, the
system architecture of the K-best detector and the 2-D sorter
are presented. The implementation results and comparisons
are provided in Section IV. Finally, Section V makes some
concluding remarks.

II. T WO-DIMENSIONAL SORTING ALGORITHM

The proposed algorithm rearranges the sorting elements
into a matrix withK rows. Each row contains the expanded
children from one parent node. Then the following five steps
are performed.
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Step 1) Row sort: Every row of the matrix is sorted in
ascending order using the Schnorr-Euchner (SE) enumeration
technique [11]. Consider a MIMO system utilizing 64-QAM
modulation. Every row of the matrix contains eight elements.
The SE enumeration applies a zig-zag movement around the
child with the minimum PED value. The children to visit
have increasing PED. Fig. 1 shows an example of the SE
enumeration. The first child,s[1]i = −1, can be obtained by
finding the minimum PED among eight PEDs. The second
child can be obtained by comparing the left and right PEDs of
the first child, and choosing the smaller one. For this example,
the second child iss[2]i = 1 becauseTi(si = 1) < Ti(si = −3).
TheK rows of the matrix can be sorted in parallel.

Fig. 1. Visiting order of the SE enumeration for eight expanded children
utilizing 64-QAM constellation symbols.

Steps 2) Column sort and Step 3) Matrix partitioning: For a
64-QAM MIMO system, there are eight columns to be sorted
in ascending order and each column hasK(i + 1) elements
at the i-th layer. After aligning the rows and columns of
the matrix in ascending order,K elements are grouped in a
sub-matrix such that the selected elements should be smaller
than or equal to the adjacent elements that have not been
selected. By enumerating all the possible cases, the matrix
can be divided into three zones. Zone I contains elements that
will always be included in the sub-matrix. These elements
can be saved into the K-best pool. Some elements will never
be among theK candidates. These elements are in Zone
III and they will be discarded. The remaining elements are
occasionally among theK candidates and no decisions can be
made on whether they are among the K-best children. These
elements are considered in Zone II and they will be stored in
a new matrix for the next stage of the 2-D sorting.

In the proposed K-best detection algorithm, the fifth, sixth
and seventh layers have the most complicated sorting proce-
dures among the eight layers, because they have largerK
values than those of the other layers. The only difference
between the fifth and the sixth layer is that every column of
the sixth layer has 20 elements while every column of the
fifth layer has 10 elements. In other words, Zone III of the
sixth layer has 80 more elements than that of the fifth layer.
Therefore, we only present the 2-D sorting algorithm for the
seventh and fifth layers. For the column sort, it should be
noted that each column of the matrix uses a different sorting
strategy. For example, in the seventh layer, as shown in Fig.
2, for the first stage, five out of eight elements in column 1
with the largest values are selected and will be stored in a new
matrix for the second stage. The remaining three elements will
be stored in the K-best pool. For columns 7 and 8, only the
two smallest values should be stored in the new matrix for the
second stage. The column sort procedure for the fifth layer
is shown in Fig. 3. For column 1, two smallest values are

Fig. 2. Proposed 2-D sorting algorithm for the seventh layer.

Fig. 3. Proposed 2-D sorting algorithm for the fifth layer.

selected and stored in the K-best pool, while the remaining
eight elements are stored in the new matrix.

If K is large, the column sort will lead to a relatively long
latency and will limit the throughput of the detector. Therefore,
the 2-D sorting scheme is applied to the column sort to
improve its efficiency. In the seventh layer, the eight elements
in each column are rearranged into a4×2 matrix. In the sixth
and fifth layers, the twenty and ten elements in each column
are rearranged into5×4 and5×2 matrices, respectively. Then
the 2-D sorting process is performed similarly.
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Step 4) Rebuild new matrices: After the row and column
sort operations, the elements in Zone II will be stored in a new
matrix for the next stage. The goal of rebuilding new matrices
is to avoid the row sort operations. For example, in the seventh
layer, as shown in Fig. 2, in the first stage there are 32 elements
in Zone II. Note thatL(1)

i should be smaller than or equal to
L
(1)
i+1, whereL(1)

i , i = 1, . . . , 6, denotes thei-th row of the
new matrix. Therefore the new matrix has six elements in the
first two rows and five elements in the remaining four rows, as
shown in Fig. 2. The six elements ofL(1)

2 are merged with the
four elements in row 5 (A1 ∼ A4) and the two elements in
row 7 (C1 andC2) of the matrix in the first stage, and should
be sorted. After the row and column sort in the first stage,
it is already known thatA1 ≤ A2 ≤ A3 ≤ A4, C1 ≤ C2,
C1 ≥ A1, andC2 ≥ A2. Therefore, we just need to insert
C1 into A2, A3 andA4, and insertC2 into A3 andA4 in
ascending order. Similarly,L(1)

6 should be sorted, which can
be performed by insertingD1 into B2 andB3 in ascending
order, and comparingD2 with B3.

Rebuilding the new matrix for the fifth layer is slightly
different. In the first stage, there are eight elements in the
first column for the new matrix and the new matrix will
have 23 elements. As shown in Fig. 3, we divide the first
column into two parts as rows 4 and 5 of the new matrix
for the second stage and each part has four elements. In
this case, the ten elements in column 1 are not necessary
to be fully sorted. The sorting strategy for column 1 can be
modified by selecting two minimum data values as the K-best
candidates, selecting four data values from the remaining eight
children and sorting them, and finally sorting the other four
children. The four elements ofL(1)

3 are combined with the
three elements in column 2 (E1 ∼ E3) and one element in
column 3 (F1) of the matrix in the first stage.L(1)

3 can be
sorted by insertingF1 into E2 andE3 in ascending order.
After the first stage, 26 and 55 elements, out of 64 and 80
elements of the matrices in Zone III, are eliminated for the
seventh and fifth layers, which corresponds to 40% and 69%
reduction in computational complexity, respectively. Forthe
sixth layer (is not shown here), 135 out of 160 elements are
eliminated from the matrix after the first stage, which implies
84% reduction in the computational complexity.

Step 5) Filling the K-best pool: Steps 1 to 4 will be repeated
until the K-best pool is filled, as shown in the second, third
and fourth stages in Fig. 2. There should be 20 children in
the K-best pool for the seventh layer. After the third stage,
16 children have already been selected and four positions are
remained in the K-best pool. At the fourth stage, the three
children in Zone I are selected and stored in the K-best pool.
The last child is chosen by comparing the three children in
Zone II and selecting the one with the minimum value. In
the fifth layer, there are 10-best candidates to be selected,as
shown in Fig. 3. After the third stage, only two positions are
left in the K-best pool, which can be obtained by sorting four
children in Zone II and selecting the two minimum values.

III. A RCHITECTUREDESIGN

We utilized our proposed 2-D parallel sorting algorithm in
a K-best detector for4× 4 MIMO systems utilizing 64-QAM

modulation. Instead of choosing the sameK value for all
layers, our utilized K-best detector uses variableK values
for different layers. LargerK values for the top layers can
provide an improved performance while smallerK values for
the bottom layers can reduce hardware complexity [6]. The
system architecture of the K-best detector is shown in Fig. 4.
The delay units are utilized to synchronize the inputs fromR

andŷ with the K-best children obtained from the upper layer.
The architecture is partitioned into eight blocks corresponding
to the eight layers of the tree, each implemented in a pipelined
and parallel fashion. Each layer uses a metric computation unit
(MCU) to calculate the PEDs. In the eighth layer, all of the
eight expanded children are selected as K-best candidates for
the seventh layer, and hence, sorting is not required. In order
to achieve high throughputs with a relatively low hardware
complexity, only four clock cycles are used to process the K-
best nodes in each layer (i.e. the new K-best children can be
generated in four clock cycles). TheK values of eight layers
are [8, 20, 10, 10, 4, 4, 4, 1] and⌈K/4⌉ = [2, 5, 3, 3, 1, 1, 1, 1]
best candidates will be generated in every clock cycle, where
⌈x⌉ denotes the smallest integer not less thanx. In Fig. 4,
theK(i) 8K(i+1) 2-D sorter in thei-th layer selectsK(i)-
best candidates from the8K(i+ 1) expanded children of the
(i − 1)-th layer using the 2-D sorting algorithm described in
Section II. For example, the 2064 2-D sorter (K(7) = 20 and
8K(8) = 64), selects 20-best candidates from 64 nodes in the
seventh layer, as illustrated in Fig. 2. The delay units fromthe
sixth layer to the second layer are used to store the indices
of the K-best children of all upper layers and compute the
PEDs of the lower layers. In the first layer, after obtaining the
minimum PED, the path of the tree can be determined from
the saved indices of the K-best nodes. Finally, the transmit
signal ŝ can be estimated by searching in the constellation set
Ω by the indices of the minimum PEDs for each layer.

The sorter blocks in Fig. 4 consist of SE sorters, buffers
to store the elements in each column, column sorters, matrix
rebuild units, and the K-best buffers. Fig. 5(a) shows the
architecture of 2064 2-D sorter for the seventh layer. The 16
expanded children are sorted by two SE sorters. Each sorter
will sort eight children. After row sorting, eight columns of the
matrix are stored using eight column buffers. Thek-th column
buffer is used to storeT7(k) andT7(k + 8). Eight elements
in each column can be obtained from the column buffer after
four clock cycles. The column sorters, such as the 68 column
sorter, could have relatively long critical path delays. Reducing
the critical path delays by inserting the pipeline registers in the
eight column sorter requires 64 registers. Considering that the
column sorters are designed as 2-D sorters, some row and
column sorting operations could be done when data elements
are stored in the column buffers. In this case, the workload of
the column sorters are alleviated and the critical paths canbe
shorten without the need for pipeline registers. At the seventh
layer of the proposed K-best detector, the eight elements ofthe
column are rearranged into a4×2 matrix and the first two steps
of the 2-D sorting algorithm are the row sort and column sort.
Hence, the row sort of two elements and the column sort of
four elements are performed concurrently when writing eight
data values into the column buffer.
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Fig. 4. Proposed architecture of the K-best detector for4× 4 MIMO systems utilizing 64-QAM modulation.

(a) (b)

Fig. 5. (a) Architecture of the 2064 2-D sorter in the seventh layer. (b) Architecture of the modified column buffer in layer 7.

The architecture of the modified column buffer in the
seventh layer is shown in Fig. 5(b). The register file has the
depth of four. In the first clock cycle,a1 anda2 are stored in
the register file at address 0.a3 and a4 are written into the
register file at address 1 in the second clock cycle. Meanwhile,
two data values are read from address 0, they are sorted, and
then a

(1)
1 and a

(1)
2 are written onto the same address in the

register file. The operations in the third clock cycle include
writing a5 and a6 into the register file at address 2, reading
four data values from address 0 and 1, performing row sort
and column sort on them, and then storinga

(2)
1 anda(2)2 back

into the register file at address 0. The sorted dataa
(2)
3 and

a
(2)
4 are written onto address 1. In the fourth clock cycle,a7

anda8 are written into the register file at address 3. Six data
values are read from address 0, 1 and 2, row sort and column
sort operations are performed on them and they are stored in
the register file. In the fifth clock cycle, eight elements are
read from the register file and are sorted in ascending order
for each row and each column. Utilizing the column buffers
shortens the critical path of the column sorters by reusing the
register file. It will not increase the hardware complexity,nor
limit the throughput.

The useful children selected by the column sorters will be
stored in the pipeline registers. Then the children in Zone II
will be passed to the matrix rebuild unit to be rearranged in the
next stage while those in Zone I will be saved in the K-best
buffer. Three pipeline registers are utilized in the 2064 2-D
sorter and four stages are used to obtain the 20-best children.
The number of children stored in the K-best buffer in four
stages are 6, 6, 4 and 4, respectively. For the sixth layer, 20-
best candidates will be generated in four clock cycles with five
children in every clock cycle.

IV. I MPLEMENTATION RESULTS AND COMPARISONS

The variable K-best detector utilizing our proposed 2-D
sorting algorithm is simulated in floating-point and fixed-point
representations, implemented in Verilog-HDL, and synthesized
using Synopsys Design Compiler. The word-lengths and the
fractional length of the signals in the K-best detector are
chosen based on the fixed-point simulation results of4 × 4
64-QAM MIMO systems. When seven integer bits and six
fractional bits are allocated to the signals after QR decom-
position (rij and ŷi) and six integer bits and six fractional
bits are allocated to PEDs (Ti), the bit error rate (BER)
simulation results show a very close performance to that of the
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TABLE I
IMPLEMENTATION RESULTS OFDIFFERENTMIMO D ETECTORSUTILIZING 64-QAM

[3] [6] [12] [13] [14] [15] [16] This work

Antenna 4× 4 4× 4 2× 2, 4× 4 4× 4 4× 4 4× 4 4× 4 4× 4

Detection K-best Var. K-best Fixed sphere Radius-adaptive K-best K-best Search Var. K-best

decoding K-best sphere detector

SNR independent Yes Yes Yes No Yes Yes Yes No

K 10 8 † 8 † 8 10 64 N/A 16†

Technology 0.13-µm 0.18-µm 65-nm 65-nm 0.13-µm 40-nm 65-nm 90-nm

Max. freq. (MHz) 282 62.5 165 158 417 893 450 200

Processing cycles 10 1 2 13 10 N/A N/A 4

Gate count (K) 114 366 88 210 340 355 184 182

Throughput 675 Mbps 1.5 Gbps 1.98 Gbps 285 Mbps 1 Gbps 200 Mbps 300 Mbps 1.2 Gbps

Latency (µs) 2.4 0.55 N/A N/A 0.36 N/A N/A 0.26
† EquivalentK values in the traditional K-best algorithm for the purpose of detection performance comparison.

floating-point model. Compared to bubble sorting, distributed
sorting, and merge sorting, which require 3969, 1798, and
2881 comparison operations, respectively, our proposed 2D
sorting algorithm uses 822 comparison operations. The K-
best detector has the gate count of 182 K when synthe-
sized in TSMC 90-nm technology. Operating atfclk = 200
MHz, the K-best detector can achieve the throughput of
(log2 M × NT × fclk)/Nc = 1.2 Gbps, whereM is the
constellation size andNc is the average number of clock
cycles required for calculating the K-best nodes in one layer,
which is four in our design. The implementation results of our
detector are compared with several other designs in Table I.
For a fair comparison, the computational complexity of the
QR decomposition was not considered. Although the designs
in [6] and [12] provide higher throughputs (forK = 8) than
ours, our simulation results in Fig. 6 show that their BER
performances are inferior to that of ours. Also, our detector
has the shortest latency compared to other designs.

Fig. 6. The BER performance of different detection schemes for a 4 × 4

MIMO system utilizing 64-QAM modulation.

V. CONCLUSION

We proposed a novel 2-D sorting algorithm that can be
utilized in K-best detectors. We employed the proposed sorting

algorithm in a4× 4 MIMO system utilizing 64-QAM modu-
lation. The variable K-best detector architecture was designed
and implemented using TSMC 90-nm technology. It operates
at 200 MHz and achieves the throughput of 1.2 Gbps with
the latency of 0.26µs. The simulation and implementation
results indicate that the proposed sorting technique can be
efficiently used in MIMO systems requiring high throughput,
short latency, and a near-optimal detection performance, with
a relatively low hardware complexity.
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