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Abstract—This article presents the design and efficient hard-
ware implementation of binarized neural networks (BNNs) for
brain-implantable neural spike sorting. In contrast to the conven-
tional artificial neural networks (ANNSs), in which the weights and
activation functions of neurons are represented using real values,
the BNNs utilize binarized weights and activation functions to
dramatically reduce the memory requirement and computational
complexity of the ANNs. The designed BNN is trained using
several realistic neural datasets to verify its accuracy for neural
spike sorting. The application-specific integrated circuit (ASIC)
implementation of the designed BNN in a standard 0.18-um
CMOS process occupies 0.33 mm? of silicon area. Power con-
sumption estimation of the ASIC layout shows that the BNN
dissipates 2.024W of power from a 1.8 V supply while operating
at 24 kHz. The designed BNN-based spike sorting system is also
implemented on a field-programmable gate array and is shown
to reduce the required on-chip memory by 89% compared to
those of the alternative state-of-the-art spike sorting systems. To
the best of our knowledge, this is the first work employing BNNs
for real-time in vivo neural spike sorting.

I. INTRODUCTION

The human brain is composed of billions of neurons, com-
municating with one another via electro-chemical processes.
The brain is responsible for nearly all functional behavior of
the human body, from controlling the movement of limbs to
regulating one’s breathing. Neuro-degenerative diseases and
spinal cord injuries can impede the brain’s natural ability
to communicate with the limbs and/or organs and hence,
imposing severe limitations on patients’ bodily functions.
Neuroscientists are keen on studying the behavior of neurons,
how their electro-chemical activities are correlated with one
another, and exploring how to form alternative neural pathways
on a patient’s brain.

The brain’s neurons fire action potentials, also known as
spikes, when their cumulative input activity exceeds some
threshold. The brain can then decode the spiking activity to
control the movement of a limb or muscles responsible for
respiration. One approach to overcome the degeneration of
neural connectivity is to use brain-machine interfaces (BMIs)
to form alternative pathways for neural signals. In recordings
preformed by large and dense multi-electrode arrays (MEAs),
an electrode may record combined signals from multiple
neurons nearby and background noise. Spike sorting is the
process of separating the electrical activity of individual
neurons from noisy recorded signals [1]. Conventionally, spike
sorting is performed offline using a computer or a machine
(i.e., in-silico). The recorded neural signal is first filtered
between 300 and 3000 Hz to remove background noise. Spikes
are then detected from ambient neural noise. Specific features
of the spike waveforms are then extracted and used as inputs

to a clustering algorithm, which groups or classifies similar
spikes belonging to specific neurons.

The hardware realization of accurate spike sorting systems
allows neuro-scientists to examine the spiking behavior of
individual neurons. Recent hardware implementations of spike
sorting aim to perform the required neural signal processing
algorithms either as a supervised process, which requires some
level of initial offline processing [2], or as a fully automated
unsupervised process [3] in real-time [2]-[12]. The designs
which require pre-processing aim to reduce the computational
complexity and hence, silicon area and power consumption
significantly, by performing a set of algorithms offline on a
computer to estimate the design parameters for the real-time
operation of the in vivo spike sorting system. To avoid heat-
related tissue damage, the brain-implantable device is com-
monly realized using extremely low-power application-specific
integrated circuits (ASICs) [13]. Computational acceleration of
spike sorting using field-programmable gate arrays (FPGAs)
have also been reported [2], [3], [14]-[16].

In this article we present an efficient design and imple-
mentation of binarized neural networks (BNNs) for real-time
in vivo classification of neural spikes. In contrast to the
conventional artificial neural networks (ANNSs), in which the
weights and activation functions are represented using real
values, the BNNs utilize binarized weights and activation
functions to significantly reduce the memory requirements and
computational complexity of the conventional ANNs [17]. The
learning process of the employed BNN is performed offline,
which entails a partially supervised spike sorting. Most neural
signal processing systems involve some offline processing
[21, [3], [5], [9], [18], [19], which results in a more area-
and power-efficient realization. While a trained BNN offers
classification for waveforms similar to those seen during initial
training, the BNNs can also offer generalization for spike
sorting using alternative techniques such as noise injection [20]
and Dropout [21], which act as a form of regularization and
leads to low overfitting and greater generalization. This article
introduces the application of BNNs for spike sorting in an
effort to significantly reduce the computational complexity and
memory requirement of the system, while utilizing an initial
off-line parameter estimation.

The rest of this article is organized as follows. Section II
briefly describes the spike sorting process and the employed
neural signal processing algorithms. Section III discusses the
fundamental operations of the BNNs and, for the first time,
introduces their application for real-time in vivo spike sorting.
Section IV presents the hardware architecture design of the
BNNs. The ASIC and FPGA characteristics and implementa-
tion results of the designed BNN-based spike sorting system
are presented and compared with those of the state-of-the-



art realizations. The feasibility of the brain-implantable BNN-
based spike sorting system for real-time processing of neural
signals is also discussed. Finally, Section V makes some
concluding remarks.

II. SPIKE SORTING

Fig. 1 shows the system-level block diagram of a BMIL.
BMIs translate (decode) neural signals recorded with a MEA
[22] into commands for the direction of machines and a
variety of prosthetic devices and hence, restoring impaired
neural signal pathways. In conventional spike sorting systems,
the spiking activity of neurons is first detected from the
recorded, amplified, and filtered neural signals combined with
ambient noise. Spike detection is usually done in two steps,
pre-emphasis and thresholding. Pre-emphasis involves specific
signal processing on the neural signals, such as computing
the absolute value [23], the non-linear energy operator (NEO)
[24], or the discrete wavelet transform (DWT) [25]. The
thresholding step then compares the neural signal, or the pre-
emphasized signal, to a threshold value. A spike is detected
when the neural signal crosses an assumed threshold.
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Fig. 1: The system-level diagram of a BCI.

After spike detection, spike alignment is performed such
that each detected spike has a common reference point (e.g.,
maximum amplitude or maximum energy) at the same sample
number in the waveform [1]. For example, if a spike waveform
is represented using 64 samples, the alignment index indicates
which of the 64 samples holds the alignment feature. Some
commonly employed alignment features include the maximum
slope, maximum absolute value, or maximum value of the
spike waveform. In the alignment process, the distance be-
tween waveforms is commonly computed with the L;-norm
(Manhattan distance) or Ly-norm (Euclidean distance). The
reliability of the distance computation can be improved by
ensuring that the alignment feature is at the same sample
index for all spikes. After spike alignment, feature extraction
(FE) is utilized to reduce the dimensionality of the spike
waveforms so that the characteristics of a spike waveform can
be described using only a relatively small number of features.
If FE is not used and the spikes are clustered directly, for
example in a 64-dimensional space, a relatively large memory
is required. However, it is far more efficient to interpret a two-
or three-dimensional clustering space when representing the
spike waveforms using a relatively small number of features,
e.g., two or three, respectively.

The final step in the conventional spike sorting process is
to group the extracted features into disjoint clusters. Feature
extraction, clustering, and classification are closely tied to-
gether. The extracted features should be chosen such that the
detected spikes originating from the same neuron create an
individual cluster. Regardless of a particular FE approach,
the classification process involves clustering of the features
such that distinct features (and spike waveforms) create dif-
ferent groups (clusters). Early clustering methods involved
manually identifying the clusters after extracting and plotting
the features [1]. Two of the most commonly used clustering
methods are the k-means [26] and OSort [27] algorithms. The
k-means clustering algorithm begins by randomly defining k
different cluster centroids. The data-points nearest to each
cluster centroids are assigned to that cluster and the cluster
centroid for each cluster is updated as the average of the
cluster. One disadvantage of the k-means clustering algorithm,
similar to the PCA algorithm, is that it cannot operate in
real-time because it requires a relatively large number of data
points to find the optimal cluster centroids. Even though recent
improvements to the k-means algorithm involve computing
relatively accurate approximations of the cluster centroids
using a small number of data samples [28], the memory and
computational requirements of processing high-dimensional
data, such as neural spike waveforms, are still not adequate for
area- and power-constrained brain-implantable ASICs. Also,
the number of clusters (NOCs) k is not known apriori and
requires supervision. In contrast, Osort creates the clusters on
the fly by means of comparing the new input feature vector to
all existing cluster averages. If the distance of the new feature
vector is beyond the assignment threshold, a new cluster
is created for that feature vector. The clustering algorithm
associates spike waveforms with the corresponding cluster
that the feature vector is assigned to. The OSort approach
is thus attractive for hardware realization [3] because it is
both unsupervised (i.e., does not require pre-processing for
the estimation of cluster averages/centroids) and can cluster
the spikes in real-time as spike waveforms are detected and
their features are extracted.

III. BINARIZED NEURAL NETWORKS FOR SPIKE SORTING

ANNSs mimic brain neurons’ activities with two key distinc-
tions to traditional Von Neumann architectures. Firstly, the
computation is performed by a set of processing elements,
also referred to as artificial neurons (ANSs), interconnected
by weighted synapses. The processing elements are loosely
modeled after biological neurons, where the excitation of a
neuron depends on the activity of its pre-synaptic neurons.
Secondly, the synaptic weights among neurons are parameters
that are obtained via a training process. Training an ANN
mimics how a human brain learns by example. An ANN
consists of an input layer, zero or more hidden layers, and
one output layer with various number of ANs in each layer.
For each AN in the hidden and output layers, the weighted
outputs from pre-synaptic neurons are accumulated and a non-
linear activation function is applied to the result. Commonly
employed non-linear activation functions include the sigmoid



function fsigmoid(2) = H%, the hyperbolic tangent function
frann(2) = TQZLP and the rectified linear unit freru(2) =
zif z > 0, else z = 0, where z denotes the accumulated
weighted inputs to an AN [29]. Each AN may have a bias b,
which essentially adds a lateral shift to the activation function
and effectively tunes how easily or difficult it is to produce an
excited output. The parameters of a neural network, including
weights, biases, the number of hidden layers, and the number
of neurons in each hidden layer, are adjusted during training.
The numerical resolution of the weights and biases, as well
as the number of neurons in the hidden and output layers,
pose a constraint on the overall memory requirement of the
ANN. The impacts of reducing the parameter resolution on
the training and performance of ANNs have been studied in
[30], [31].

Deep neural networks (DNNs) employ a relatively large
number of hidden layers and have been used in a variety
of machine learning applications, from image and pattern
recognition, self-driving vehicles, to medical experimentations
for diagnosing diseases. The challenge with the efficient hard-
ware implementation of DNNs for extremely area- and power-
constrained applications, such as brain-implantable devices,
lies in the relatively large number of parameters for storage.
For off-line realizations, this constraint is not crucial due to
the availability of storage on conventional workstations.

We have previously employed ANNs for spike sorting [4].
This work aims to further reduce the overall logical resource
and memory requirements of the implemented spike sorting
system. In a notable effort to reduce the memory requirement
of DNNs, a method for the binarization of weights and
activation functions was presented in [17]. The binarization
is given as:

. F1if k>0,
ki = sign(k) = {1ifk<0 M

where k;, denotes the binarized value of k and sign denotes
the sign function. As opposed to the traditional ANNs that
often employ biases in the activation function, BNNs do not
add a bias to the weighted inputs since it will cancel the
binarization. The binarization of the learned parameters and
the activation functions dramatically reduces the amount of
memory required for BNNs. For example, consider a network
topology of 784-512-10 with 784 input neurons, 512 neurons
in the hidden layer, and 10 output neurons. The number of
weight parameters for this topology is 406,528. If the weight
values for a traditional ANN are stored using 8 bits, the
total memory requirement is 3.25 MB, whereas the memory
requirement for a BNN with the same network topology is only
406 kbits. Even if the weights are stored using two-bit signed
integers, i.e., 115 and 01y for -1 and +1, respectively, the
memory requirement is 812 kbits, which is far less than that
of the ANN. Moreover, the required storage for representing
the neurons’ outputs is considerably smaller for the BNNs.
The accuracy of various BNNs have been assessed using
standard datasets, including MNIST, SVHN, and CIFAR-10,
and it was shown that the accuracy of the BNNs is comparable
with those of the state-of-the-art classifiers [32]. To train the

BNNs for spike sorting, we use the datasets in [33] and
quantify the accuracy of the sorting process. The datasets
consist of simulated waveforms which differ based on the
differentiality of the spike shapes (Easy and Difficult) for
various noise levels. Each dataset offers three distinct spike
shapes. The spike shapes were randomly chosen from 594
spike shapes in a real neural signal database. Then, background
noise was added to the spike waveforms with the noise
standard deviation levels within [0.05, 0.2], and up to 0.4 for
the Easyl dataset, relative to the spike amplitude. The signal-
to-noise ratios (SNRs) of the datasets are between -31.69 dB
and -27.39 dB. Each dataset includes various ground truth
information, such as the time of spike events, which indicates
the particular spike shape (or spike class) that occurred at
that time. The input to the BNN is a 64-sample aligned spike
waveform and the three one-bit outputs of the BNN indicate
the spike class that the input spike belongs to. For the binarized
outputs of the network, two output encodings of one-hot and
binary are utilized. The employed BNN topology is 64-5-n,
i.e., 64 inputs, 5 neurons in a hidden layer, and n neurons
in the output layer, where n is either equal to C' for one-hot
encoding or ceil(log2 C’) for the binary encoding, where C'
denotes the number of spike classes (three in our designed
and implemented BNN classifier) and ceil denotes the ceiling
operator.

The Python Larq framework [34] is used to train the BNNs.
The Adam optimizer with the default parameter values of
learning rate = 0.01, 51 = 0.9, B2 = 0.999, ¢ = 1e-07, is used
to train the BNNs for 250 epochs. For the dataset in [33], the
training data consists of 2460 spikes and their corresponding
spike classes. The data is divided into 70% for training and
30% for testing. The data is distributed such that each of
the spike classes in the dataset appears in equal numbers
and hence, the network is trained using a balanced dataset.
The spike classes, which are given as integers in the original
dataset, are converted into row vectors indicating the target
outputs for the given training spikes with the desired output
encoding mode. For example, if the spike class is 3, the one-
hot encoded row vector denotes 0015, i.e., the third output
neuron should produce a one. Similarly, the binary encoded
output is given as 11,. Because the sign function only results
in outputs -1 and 1, the zeros are mapped to -1. So, a spike
class of 3 is mapped onto row vectors [-1 -1 1] and [1 1] for
the one-hot and binary encoding, respectively.

Figs. 2(a—d) show the classification accuracy of the trained
BNN using the one-hot and binary encoding schemes, over the
Easyl, Easy?2, Difficultl, and Difficult2 datasets, respectively.
One can see that for most cases, the binary output encoding
outperforms the one-hot encoding. The classification accuracy
degrades with increasing the noise level for both encoding
schemes, however, utilizing the binary encoding, the accuracy
of the BNN is less susceptible to increases in the noise level
over all the datasets compared to utilizing one-hot encoding.
The median classification accuracy of the one-hot encoded
BNNs are 0.96, 091, 0.78, and 0.78, while for the binary
encoded BNN are 0.98 0.96, 0.89, and 0.82, for the Easyl,
Easy2, Difficultl, and Difficult2 datasets, respectively. Table I
gives the average classification accuracy of the BNN employ-
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Fig. 2: Classification accuracy of the BNN for the (a) Easyl,
one-hot and binary encoding schemes.

ing two encoding schemes over four different datasets and var-
ious noise levels. One can see that for the employed datasets,
the binary encoding provides greater average accuracy.

TABLE I: The average classification accuracy of the BNN
employing two encoding schemes over four different datasets
and various noise levels.

Dataset Encoding method | Classification accuracy (%)
C_Easyl One-hot 92
Binary 95.25
C_Easy2 One-hot 89.5
Binary 94.5
C_Diffl One-hot 76.5
Binary 87.75
C_Diff2 One-hot 76.75
Binary 82

We also trained the BNN using two other datasets, a multi-
unit activity dataset [35] and a real human dataset [36].
A multi-unit activity is defined as the aggregate response
of multiple single-units near the tip of an electrode. The
multi-unit dataset was created to more accurately model
the realistic conditions of recorded neural signals using a
relatively dense MEA. The background noise was modeled
by the superposition of the spiking activity of extracellular
neurons. The five defined multi-unit datasets have varying
amplitudes for the single-unit activities and have different
spike firing rates. For classification, the datasets have three
possible spike shapes: two distinct single-unit waveforms and a
set of multi-unit waveforms. The average median classification
accuracy for the one-hot encoded BNN is 0.76 and for the
binary encoded BNN is 0.81 over the multi-unit datasets
1 — 5. Again, the binary output encoding shows a better
classification accuracy than the one-hot encoding. Because the
binary encoding can cause output neurons to produce the same
output value for different types of spike waveforms, this can
be used as a form of regularization for the network during
training.

The real human dataset is a recording from the temporal
lobe of an epileptic patient. Because verified spike times and
spike classes were not included in the real human dataset,
we use the OSort algorithm to cluster a subset of the spike
waveforms, which then converged to four distinct clusters. The
cluster assignments were used to train the BNN using a subset
of the spike waveforms. The BNN was then evaluated using

(b) Easy2, (c) Difficultl, and (d) Difficult2 datasets using the

the remainder of the spikes in the dataset. The classification
accuracy of the BNN on the real human dataset was 0.72
and 0.88 using the one-hot encoding and the binary encoding
schemes, respectively.

Some spike sorting systems employ feature extraction to
reduce the dimensionality of the spike waveforms [5], [8],
[9], [12]. To compare the sorting accuracy of the BNN-based
classifier when using detected spike waveforms and a reduced
feature space, we employed zero-crossing features (ZCFs)
given as [37]:

Ki—1 Kao—1
72C, = Z s(n), ZCy= Z s(n),
n=0 n=C

where K7 denotes the zero-crossing point in the spike wave-
form and K, denotes the number of samples in the spike
waveform s(n). ZC; and ZC; denote the areas under the posi-
tive and negative portions of the spike waveform, respectively.
They reduce the dimensionality of the spike feature space by
96%. The ZCF would require two additional accumulators to
compute ZC; and ZCy and the network topology becomes
2-5-3 for the one-hot encoding and 2-5-2 for the binary
encoding, resulting in the weight memory requirements of only
25 bits and 20 bits, respectively. The dimensionality reduction
of the network input and the weight memory requirements
comes at the significant loss in classification accuracy (around
65% and 36% for the binary and one-hot encoded outputs,
respectively). It is also shown that increasing the number
of hidden layers and the number of ANs in a layer yielded
negligible performance improvement. Therefore, we do not
incorporate feature extraction in our designed spike sorting
system.

IV. BNN HARDWARE ARCHITECTURE

Fig. 3 shows the top-level block diagram of the designed
BNN-based spike sorting system using the NEO-based spike
detector [2], the maximum amplitude spike alignment, and
the BNN-based spike classifier. Because our goal is to reduce
the silicon area and power consumption of the spike sorting
circuit for real-time in vivo realization while achieving an ac-
ceptable level of sorting accuracy, we choose to use the NEO-
based detection technique as it imposes less computational
complexity than computing the DWT, yet providing improved



accuracy over the absolute value method of pre-emphasis. This
is primarily because the NEO algorithm derives its threshold
value based on the probability of false alarm, whereas the
threshold value in the absolute method is not adaptive to
real-time characteristics of the neural signal. It was shown
in [38] that in cases where the signal-to-noise ratio (SNR)
was relatively high, the absolute value method is as accurate
as NEO for spike detection. However, NEO outperforms the
absolute value method when the SNR is low.
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Fig. 3: The top-level block diagram of the BNN-based spike
sorting hardware.
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Fig. 4: The block diagram of the designed BNN-based spike
classification module.

The block diagram of the BNN-based spike classification
module is shown in Fig. 4. The aligned spike waveform is
stored in the shift register SW ShiftReg. To accommodate the
aligned spikes, the depth of SW ShiftReg is set to 64 and each
of the registers is 10 bits wide. The main processing units are
the hidden layer processing units (HPUs) and the output layer
processing units (OPUs). Once the aligned spike is received,
the control unit begins to read values from the weight memory
Binary Weight RAM (BWRAM) into the HPU. To avoid using two
bits to represent the values -1 and 1, a zero output of the
sign function denotes a positive sign bit and correlates to a +1
output. Similarly, a one output of the sign function denotes
a negative sign bit and correlates to a -1 output. Because
the weights are constrained to -1 or +1 during the forward
propagation, the accumulation of gradients is also constrained
to the range between -1 and 1 during the training process. The
width of the BWRAM is equal to the number of hidden layer
nodes ny = 5 and its depth is equal to the number of samples
used to store the spike, i.e., 64. The BWRAM is implemented
using the SRAM standard cells. The synaptic weights between
the hidden layer and the output layer are stored in a 15-bit
output weight register OWR. The number of bits stored in
OWR is equal to the product of the number of hidden layer
neurons n; and the number of output layer neurons no. For
our designed network topology with 64 inputs, 5 hidden layer
neurons, and 3 output neurons, the synaptic weight memory is

only 335 bits. Compared to our template matching (TM)-based
spike classifier in [2], which requires 3072 bits of storage
for three templates, the designed BNN-based spike classifier
requires 89% less storage.

The block diagram of the HPUs is shown in Fig. 5. It consists
of a two’s complement unit, to negate the spike samples, and
an accumulator. Since the spike inputs are real-valued and
the weights associated with the synaptic connections may or
may not change the signs of the spike samples, the hidden
layer needs to accumulate non-binary input values. The weight
values read from the BWR determine whether the value that is
accumulated is the negated spike sample value or the original
value for the weight 1 or 0, respectively. The control signal
AccRST is used to reset the accumulator registers. The WIL.WF
denotes the integer and fraction lengths of the accumulation
registers, respectively. The sign function is implemented by
passing the most significant bit of the accumulating registers
to the output. To process all n; hidden layer neurons in one
clock cycle, the HPU consists of nj, sets of multiplexers and
accumulators, producing ny, bits at its output.
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Fig. 5: The block diagram of the hidden layer processing units.

Fig. 6 shows the block diagram of the output layer process-
ing units. It consists of an array of no XOR gates, majority
functions m(X), where X denotes the outputs of the XOR
arrays, and a set of inverters. The XOR arrays are effectively
used to perform the bitwise multiplication between the outputs
of the HPU and the weight values stored in the OWR. The
output of each XOR array is nj bits wide and the majority
function m(X) is used to determine whether the ny bits
contain more ones than zeros. For our designed BNN, since
n, = 5, m(x) = 1 when at least three of the bits in X
are one. The set of inverters is only used when the one-hot
encoding is employed, in which case the value of each output
bit corresponds to the presence or lack of a particular spike
class at that time.

To assess the accuracy of the designed BNN classifier over
varying number of clusters, we employed the datasets from
[40], which contains 95 simulations of neural signals with
three to twenty clusters. The classification accuracy in Fig.
7 shows that the designed BNN with only five ANs in the
hidden layer can reliably sort the activity of up to 12 single
units with the binary encoding scheme. When utilizing the
binary encoding scheme, the NOC is limited to a maximum
of 2™ — 1, where n, denotes the number of ANs in the
output layer. Thus, the designed BNN-based spike sorting
system with n, = 3 can sort up to seven clusters. The
memory size of the one-hot encoded BNN can be given as
(64 x np) + (np, x NOC), where 64 is the number of samples



TABLE II: The ASIC characteristics and implementation results of various spike sorting systems

Design Ours (3] [2] (4] [5] [6] (7] (8] 9] [10] (11] [12]
Algorithm BNN OSort ™ ANN FE OSort OSort FE FE ™ FE FE*
Number of 3-7 3 3 3 - 3 3 3 4 3 3 6

clusters per channel
Classification accuracy 0.91-0.90 0.87 0.90 0.98 0.77 0.75 0.93 0.84 0.85 0.93 0.86 0.92
Data rate reduction 2000 x 1600x | 3200x | 1866x 11x 240x 278x | 240x — - 257% -
Supervised Y N Y Y Y N N N Y N N N
Technology (nm) 180 32 45 32 90 65 45 45 130 40 65 65
Core voltage (V) 1.8 1.16 0.25 0.7 0.55 0.27 — 1.1 1.2 1.1 0.54 1
Operating frequency (kHz) 24 24 24 20 4000 480 56 960 160 500 3200 30
Area per channel (mm?) 0.33 2.57 0.30 0.009 0.06 0.07 0.07 2.7 0.023 | 0.0175 | 0.003 0.09
Power per channel (W) 2.02 2.78 0.064 1.04 2 4.68 10.3 20 0.75 19 0.175 | 0.181
Scaled area
per channel (mm?)* 0.33 102.8 5.7 0.36 0.396 0.84 1.33 51.3 0.066 0.473 0.036 1.08
Scaled power
per channel (uW)* 2.02 8.849 6.04 15.04 56.89 | 671.61 - 57.99 1.86 56.8 6.28 1.06

* Scaled to a 180-nm CMOS technology with a 1.8V supply voltage, as defined in [39]. Our implementation results are highlighted.
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in a spike waveform and n;, denotes the number of ANs in the
hidden layer. The memory size of the binary encoded BNN
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Fig. 8: The chip layout of the designed BNN-based spike
sorting system.

can be given as (64 x ng) + (np, x ceil[logy (NOC)]). Because
the binary-encoded BNN is able to represent a wider range of
output values using fewer ANs in the output layer, it lowers
the number of hidden-to-output layer weights. Moreover, the
binary encoded BNN offers a greater accuracy for different
number of clusters and over varying noise levels. Compared
to the other state-of-the-art spike sorting systems, offering up
to six clusters per channel, the designed BNN-based spike
sorting system can classify up to 20 clusters.

The training time for large-scale and deep neural network
models could be considerable, however we found that since
our model is relatively small, increasing the NOCs, which
increases the number of ANs in the output layer, has a
relatively small impact on the training time. However, the
training time for the estimation of the binary weights is directly
related to the number of training examples, the number of
training epochs, and the number of training iterations. The
off-chip training time of our in vivo BNN-based spike sorting
system ranges between 250 ms and 400 ms for 10 iterations
of training with 50 epochs per iteration.

We have implemented our BNN-based spike sorting system
in a standard 180-nm TSMC CMOS process. The chip layout
of the BNN-based sorting system is shown in Fig. 8, which is
estimated to occupy 0.33 mm? of silicon area. We previously
designed and implemented the NEO-based spike detection




and spike alignment units for our TM-based spike sorting
system and the parallel OSort-based real-time spike sorting
system in [2] and [3], respectively. Synthesis was performed
using Synopsys Design Compiler and the place-and-routing
was performed using Cadence Innovus. After routing and
static timing analysis, the power was estimated by simulating
the layout with the datasets from [33]. A variable change
dump file was used to more accurately estimate the switching
activity in Innovus. It was estimated that the BNN-based spike
sorting chip will consume 2.02 W from a 1.8 V supply while
operating at 24 kHz.

A commonly used metric for quantifying the classification
accuracy of spike sorting realization is the F-score metric
[41] and is given as F' = %, where Tp, Fp, and
Fy denote the number of true positive, false positive, and
false negative classifications, respectively. True positives are
defined as spikes that are detected, classified, and exist in the
reference dataset. A true positive is verified by finding the
spike waveform in the reference dataset as well as the time
of detection. A false positive is a spike that is detected and
classified, but does not exist in the reference dataset. A false
negative is a spike that exists in the reference dataset, but
is not classified by the spike sorting system. Our ASIC im-
plementation of the BNN-based spike sorting system achieve
the average F-Scores of 0.96, 0.94, 0.86, and 0.86 for the
Easyl, Easy2, Difficultl, and Difficult2 datasets, respectively.
The F-scores for the multi-unit datasets 1-5 are given as 0.94,
0.83, 0.89, 0.84, and 0.96, respectively. The F-scores for the
datasets from [40] with three to seven NOCs are given as 1.0,
0.98, 0.97, 0.96, and 0.95, respectively. The F-score cannot
be computed for the real human dataset due to the lack of
the ground truth. The designed ASIC classifier is a bit-true
realization of the fixed-point software model and hence, their
F-scores are equivalent.

Various ASIC implementations of spike sorting systems
have been previously reported [2]-[11]. Table II gives the
characteristics and implementation results of various state-of-
the-art spike sorting systems. Our designed and implemented
BNN-based spike sorting system is able to classify single units
of up to seven clusters. In [3] we designed and implemented a
parallel OSort-based spike sorting system in a standard 32-
nm CMOS process. In [2] we implemented the TM-based
spike sorting ASIC using three templates in a 45-nm CMOS
process. In [4] we implemented an ANN-based spike sorting
system. The ANN consists of one hidden layer neuron and
three output layer neurons, all of which utilize the ReLU
activation function. The work in [5] performs NEO spike
detection, aligns detected spikes to maximum derivative, and
implements FE via discrete derivatives. Their design consists
of four 16-channel modules which produce either aligned
spikes or feature vectors, but does not perform real-time
classification of the detected spikes. The work in [6] uses the
absolute value detection scheme and implements the OSort
clustering algorithm for a single 16-channel module. Similar
to [6], in [7] spikes are first detected using a voltage threshold.
Detected spikes are then aligned to a maximum absolute
amplitude and OSort-based clustering was utilized. The work
in [8] performs single-channel spike sorting using the NEO-

based detection, maximum amplitude alignment, and FE us-
ing discrete derivatives. It supports an unsupervised learning
process, similar to the OSort-based systems. The work in [9]
presents a multi-channel spike sorting ASIC based on FE. The
design in [10] presents a multi-channel TM-based spike sorting
ASIC with a built-in OSort learning system. The work in [11]
presents a multi-channel spike sorting processor based on the
integer coefficient FE and clustering. Finally, the work in [12]
presents the ASIC implementation of a dictionary learning-
based feature extraction. Similar to the BNN approach, the
dictionary values are constrained to the ternary set of [-1, 0,
+1] and no multiplications are required. Note that the authors
only list the ASIC implementation results for the feature
extraction module, which are denoted as “FE*” in Table II. The
spike sorting systems, which employ unsupervised learning,
support real-time clustering/classification of detected spike
waveforms. However, the TM-based and BNN-based sorting
systems that require pre-processing of the neural recording in
order to generate the template waveforms and BNN weights,
respectively, require significantly less storage and reduced
computational requirements, while achieving comparable sort-
ing accuracy. The ASIC designs in [5], [6], [9]-[11] are multi-
channel systems and, for a fair comparison, the area and power
consumption results for single-channel sorting systems are
given in Table II. During spike sorting operation, the sampling
rate is 24 kSamp/sec. Each sample is represented using 10
bits, which results in an input bitrate of 240 Kbps. With an
average neuron spiking rate of 40 spikes per second [42] and
representing the BNN output classification with 3 bits (one bit
per neuron in the output layer), the output bit rate is reduced
to 120 bps. This results in a 2000 times data rate reduction
compared to the input sampling rate. Since the energy required
to transmit one bit of data is approximately 3 nJ [43], this
results in a wireless transmission power of about 360 nW.
Therefore, the total power of our ASIC chip is 2.36 uW
with the power density of 7.15 pyW/ mm?, which satisfies the
tissue-safe requirements for brain implantable devices [44].

For a fair comparison of the ASIC implementation results
across different CMOS technologies and supply voltages, we
have also reported the power consumption and area utilization
of the previously published work scaled to 180-nm technology
as presented in [39]. As given in Table II, the BNN-based spike
sorting system requires a smaller silicon area and consumes
less power, while providing comparable sorting accuracy.
Our TM-based spike sorting ASIC [2] and the OSort-based
clustering system [3], as well as the work in [7], [8], [10],
[11], have utilized the same reference datasets from [33] to
quantify the accuracy of their sorting system. The work in [5]
uses both synthetic data and real data, but the synthetic data
differs from the one used in [33]. The work in [6] and [9]
both use real neural data for evaluating the accuracy of their
spike sorting systems.

Compared to the OSort clustering, in which the algorithm
can adapt to signal variations in real time, such as electrode
drift or increases in noise levels, the BNN-based clustering
does not offer run-time adaptability. Nevertheless, compared
to the other supervised approaches that require pre-processing
for parameter estimation, such as TM-based spike sorting,



TABLE III: The characteristics and implementation results of various spike sorting systems on FPGAs

Work Algorithm Device WL.WF Regs. LUTs. BRAMs DSP48s. Max. Freq. | Clustering Sorting
(MHz) Latency Accuracy
Ours BNN Artix-7 16.11 267 (0.1%) 314 (0.3%) 2 (0.27%) 0 (0%) 125 0.51 us 93%
[3] OSort Virtex-6 16.11 8444 (2%) 16472 (9%) 29 (4%) 130 (9%) 123 0.26 us 87%
[14] OSort Virtex-5 16.8 16245 (27%) 23567 (40%) 63 (25%) 29 (4%) 100 11.1 ms —
[2] ™ Virtex-6 16.11 4880 (1%) 6635 (3%) 0 (0%) 5 (0.6%) 122 0.55 us 90%
[15] ™ Virtex-6 20.0 29000 (6%) 190000 (83%) 24 (6%) - — 2.65 ms —
Ours* BNN Zyng-7000 16.11 124 (0.05%) 147 (0.12%) 0 (0%) 0 (0%) 263 0.24 us —
[16] OSort Zyng-7000 16.0 12150 (11%) 14037 (16%) 102 (72%) | 120 (54%) 101 179.4 us —

Our implementation results are highlighted.

the BNN can employ various optimization schemes during
training to create a generalized and robust network model that
reduces overfitting [45]. For example, the training dataset can
be augmented by additional data with increased noise levels to
improve the robustness of the BNN model [20]. An alternative
approach to diminish overfitting is to introduce Dropout among
layers of the BNN by removing some synapses during training
and hence, forcing the network model to “space out” it’s
weighting of parameters [21].

Our BNN-based spike sorting system is portable and de-
signed for FPGA and ASIC realizations. Both ASIC and
FPGA implementations were tested and achieved the same
sorting accuracy. Table III gives the characteristics and im-
plementation results of various state-of-the-art spike sorting
systems implemented on FPGAs. In Table III, for a fair
comparison, we list the implementation results for the designed
BNN-based spike sorting system using similar FPGA devices.
One can see that the unsupervised Osort-based implementation
requires considerably more reconfigurable resources than that
of the TM-based and that of the supervised BNN-based sorting
systems. The design in [14] presents an FPGA implementation
of OSort, which was designed for high-performance process-
ing of recorded neural data on a workstation. The reported
latency of 11 ms was assumed based on a 24 kHz sampling
frequency, which implies the worst case sorting latency of
266 clock cycles. The work in [15] presents the hardware
implementation of a bayes-optimal TM-based spike sorting
system. While the maximum operating frequency of their
design was not reported, their sorting latency was given as 53
clock cycles, which is slightly less than that of our design at
64 clock cycles. Since the work in [16], which uses the OSort
algorithm for real-time clustering of spikes, only presents the
FPGA implementation results for the clustering and classifica-
tion modules, for a fair comparison the FPGA implementation
results of the designed BNN classification module are given
separately and denoted by “Ours*” in Table III. Note that the
classification latency of the OSort-based implementation in
[16] is 18,127 clock cycles while the classification latency of
our BNN-based classification module is only 64 clock cycles.

V. CONCLUSION

This article presented that the binarized neural networks
(BNNs) can be efficiently used for real-time in vivo spike
sorting, while significantly reducing the memory requirement
and computational complexity of the system compared to the
other state-of-the-art realizations. Our ASIC implementation

results confirmed that a relatively small BNN can be used for
brain-implantation due to its small silicon area and its low
power consumption, while providing reliable sorting accuracy
for varying numbers of clusters.
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