
1

An Artificial Neural Network Processor with a
Custom Instruction Set Architecture for Embedded Applications

Daniel Valencia, Saeed F. Fard, and Amir Alimohammad
Department of Electrical and Computer Engineering

San Diego State University, San Diego, U.S.A.

Abstract—This article presents the design and implementa-
tion of an embedded programmable processor with a custom
instruction set architecture for efficient realization of artificial
neural networks (ANNs). The ANN processor architecture is
scalable, supporting an arbitrary number of layers and number
of artificial neurons (ANs) per layer. Moreover, the processor sup-
ports ANNs with arbitrary interconnect structures among ANs to
realize both feed-forward and dynamic recurrent networks. The
processor architecture is customizable in which the numerical
representation of inputs, outputs, and signals among ANs can
be parameterized to an arbitrary fixed-point format. An ASIC
implementation of the designed programmable ANN processor
for networks with up to 512 ANs and 262,000 interconnects is
presented and is estimated to occupy 2.23 mm2 of silicon area
and consume 1.25 mW of power from a 1.6 V supply while
operating at 74 MHz in a standard 32-nm CMOS technology.
In order to assess and compare the efficiency of the designed
ANN processor, we have designed and implemented a dedicated
reconfigurable hardware architecture for the direct realization of
ANNs. Characteristics and implementation results of the designed
programmable ANN processor and the dedicated ANN hardware
on a Xilinx Artix-7 field-programmable gate array (FPGA) are
presented and compared using two benchmarks, the MNIST
benchmark using a feed-forward ANN and a movie review
sentiment analysis benchmark using a recurrent neural network.

I. INTRODUCTION

A biological brain consists of billions of relatively slow ele-
ments called neurons, each of which is connected to thousands
of other neurons with which they communicate by sending
messages in the form of voltage spikes [1]. An artificial
neural network (ANN) is an information processing paradigm
that is inspired by the way a biological brain processes
information. An ANN is composed of interconnected process-
ing elements referred to as artificial neurons (ANs), which
loosely model the neurons in a biological brain. In an ANN
structure, the interconnected ANs are organized among input,
hidden, and output layers. An ANN stores representations in
the interconnections between ANs (like the synapses in the
biological brain), each of which contains a value known as
the weight. Similarly to biological brains, ANNs learn by
example. An ANN is configured for a specific application
through the learning process. The learning mechanism involves
adjustments to the weights of the interconnects based on the
input patterns. Therefore, instead of being programmed as in
microprocessors, ANNs learn what weights to use through
a process called training. After observing enough examples,
neural networks can categorize new objects they have never

The authors have made their design description publicly available at:
https://github.com/dlvalencia/ANN-Processor.

experienced before, or at least offer a prediction. During
operation, a pattern is applied to the input layer. Each AN
reacts to the input data. Using a set of weighted interconnects,
particular ANs in the network react the strongest when they
sense a matching pattern. The response is broadcasted to the
other ANs in the hidden layers and finally, the prediction is
produced at the output layer.

The application domain of ANNs is broad and diverse,
including pattern recognition, image classification [2], au-
tonomous vehicles [3], and language translation with recurrent
neural networks [4]. Some recent research has been focusing
on the digital hardware implementation of relatively large
network models for high-performance and accelerated com-
puting, such as AlexNet [2], VGG-16 [5], and GoogLeNet [6].
Also, hardware realizations of convolutional neural networks
(CNNs) have received interest [7]–[9]. Various processor-
based architectures for the realization of deep neural networks
(DNNs) have also been reported [10]–[16]. For example,
Google’s neural network processor, the Tensor Processing Unit
(TPU) [17], was designed to process computationally-intensive
workloads of DNNs on server farms. There has also been
work presenting custom instruction set architectures for neural
network processors [18]–[20].

Recent advances in memristor technology has shown
promising analog implementation of ANNs [21]. Memristors
can exhibit a range of programmable resistance values and are
the basis for multiply-accumulate (MAC) operations employed
in ANNs. The weights are encoded as memristor resistance
values and the dot-products are performed automatically as
currents flow through the memristor-crossbar. While more
area and energy-efficient than their digital counterparts, the
memristor technology is not yet mature compared to the
standard CMOS, precluding their applications in practical
implementations [22].

While high-performance general-purpose processors or
application-specific processors for high-throughput realization
of large neural networks have received considerable attention,
our focus in this work is on designing a compact and pro-
grammable processor architecture with a custom instruction
set architecture for area- and power-constrained embedded
applications utilizing moderately-sized ANNs. Moderately-
sized neural networks consist of a relatively small number
of neurons, in the order of hundreds to thousands, requiring
a relatively small number of parameters (in the order of a
few hundred thousand) compared to large network models
with hundreds of thousands to millions of parameters. The
designed processor architecture supports arbitrary intercon-
nect structures among ANs to realize both feed-forward and

2

dynamic recurrent neural networks (RNNs) and is scalable,
i.e., supporting ANNs with arbitrary number of layers and
number of ANs per layer, limited by the number of available
configurable resources on the device. Moreover, the processor
architecture is customizable in which the numerical repre-
sentation of inputs, outputs, and signals among ANs can be
parameterized to an arbitrary fixed-point format.

One of the applications of ANN models is in brain-computer
interfaces (BCIs) [23], [24]. In [25], an ANN is utilized for
mapping neural activities from one region of the brain and pro-
duce neural stimulation to another region of the brain, in which
the ANN behaves as an artificial pathway for restoring and
augmenting functions. ANNs have been utilized for training
spiking neural networks (SNNs) [26], which closely resemble
the spiking dynamics of biological neurons, and decoding of
neural signals for prosthesis control [27], [28]. SNNs pass
information among neurons by emitting action potentials,
or spikes. Because SNNs simulate the voltages found in
biological neurons, they are considered a prime candidate for
modeling biological neurons. There have been advances in
both the computational models [29], [30] as well as hardware
implementation of SNNs [31], [32]. Compared to ANNs in
which the precise timing of spiking activity is not inherently
part of the model [33], the timing resolution of spiking neurons
greatly increases the computational complexity of SNNs. The
computational complexity of the SNNs can be reduced using
an event-driven methodology [31], in which a global clock
signal is not required and the input and output behavior of
the neurons are emulated without being strictly bio-physically
accurate.

Recently published neuromorphic processors implemented
in analog [34] and digital [35] are based on SNNs. These
processors are not tuned to one specific application and often
employ online learning methods, such as spike time-dependent
plasticity [36]. Compared to the mature field of ANN training,
the training algorithms for SNNs are still an active area of
research [37], [38]. While neuromorphic processors may be
ideal for systems where real-time learning or adaptation to
signal changes is required, certain applications may not be
well-suited for SNNs, such as classifications of frame-based
data (i.e., data that is not inherently time-dependent) [39]. The
widely-employed gradient descent-based learning schemes for
training ANNs make them an attractive model when pre-
processing is required.

This work focuses on the design and implements of a
programmable processor architecture for realizing various
ANN topologies and network specifications. The rest of this
article is organized as follows: The design and implementation
of the programmable ANN processor is presented in Section
II. Section III details the design of a dedicated reconfigurable
hardware architecture for the direct implementations of ANNs.
The dedicated hardware architecture is used to assess and
compare the efficiency of the designed ANN processor. In
Section IV, two ANN benchmarks are employed, MNIST
digit recognition [40] and epileptic seizure detection [41], to
quantify and compare the implementation characteristics of
the designed programmable ANN processor and the dedicated
reconfigurable ANN hardware on a Xilinx Artix-7 field-

programmable gate array (FPGA). Finally, Section V makes
some concluding remarks.

II. THE EMBEDDED PROGRAMMABLE ANN PROCESSOR

An ANN is based on a collection of interconnected ANs.
Each connection can transmit a signal from one AN to another.
Typically, ANs are aggregated into layers and signals traverse
from the first (input) layer to the last (output) layer, possibly
through some middle (hidden) layers. The model of the AN
and an example three-layer neural network consisting of an
input layer, a hidden layer, and an output layer with 2, 3, and
1 ANs, are shown in Figs. 1(a) and 1(b), respectively. The
number of hidden layers, the number of ANs in each layer,
and the interconnect structure among ANs can vary greatly
among various ANN models. The output zn of the n–th AN
is computed by some non-linear activation function f(yn) of
the sum of the weighted inputs and a bias as:

yn =

Mn∑
i=1

[
winxi

]
+ bn, (1)

where xi denotes the i-th input, win denotes the interconnec-
tion weight between the i–th AN of the previous layer and the
n–th AN of the current layer, Mn denotes the number of inputs
to the n–th AN, and bn denotes the bias for the n–th AN.

(a)

AN

f(yn)
inputs

x0

x1

xn

w0

w1

wn

output
Ʃwixi + b

i = 1

(b)

Input
Layer

Hidden
Layer

Output
Layeri1

i2

w11

w12

wij

w11

w21

w31

ba3

ba2

ba1

bo1

yn =

Fig. 1. (a) An artificial neuron and (b) a three-layer ANN.

Activation functions are used to model the excitation prop-
erties of biological brain neurons. By shifting the activation
function to the left or right by a bias bn, an ANN can fine tune
how easy (or difficult) it is for particular ANs to exhibit an
excited output state. Non-linear activation functions have been
widely used in ANNs [42]. Two commonly used sigmoidal
activation functions (SAFs) are the logistic sigmoid and the
hyperbolic tangent (tanh) functions [43], which are defined as
fl(yn) = (1+e−yn)−1 and ft(yn) =

(
2×(1+e−2yn)−1

)
−1,

respectively. The sigmoid and the tanh functions have bounded
outputs within [0, 1] and [-1, 1], respectively. The rectified
linear unit (ReLU) activation function

fr(yn) =

{
0 if yn ≤ 0

yn if yn > 0

has also received applications in the hardware implementation
of ANNs as it only requires a comparator and lookup tables
(LUTs). However, because of the fixed wordlength of signals
and the unbounded nature of ReLU, the output of fr(yn) may
overflow, causing erroneous values to propagate to subsequent
layers of the network.

3

0

k

inputs

weights

LPU Bank

ACF_Sel

LPU_Out

Instr.
Decoder

Register
File

Weight
Mem

Input
Mem

AN
Mem

ALU

EQ

MEM_SEL

0

k

Parameters

Network Inputs

imm

Instr.
Mem

PC

jumpTarget

1

Offset

+

ANN
Program

bias

1

Fig. 2. The top-level microarchitecture of the proposed programmable ANN processor.

The top-level microarchitecture of the designed pro-
grammable ANN processor is shown in Fig. 2. It consists of
memory units, an instruction decoder, a register file, and a
layer processing unit (LPU) bank, which consists of k LPUs
to perform the computation of ANs in a layer. The LPU’s
datapath is shown in Fig. 3, which consists of a LUT RAM to
store weight values, a MAC unit, and an activation function
ACF unit. The end-user first loads a set of instructions, weights,
biases, and network inputs to the Instr Mem, Weight Mem, and
Input Mem, respectively, after which the processor can begin
executing instructions. The artificial neuron memory AN Mem is
used to store the output of each AN in the ANN. The depth of
the AN Mem is directly defined by the total number of ANs. The
instructions, which are addressed by the program counter (PC)
register, are decoded by the Decoder to generate the appropriate
control signals for the multiplexers and registers. The ACF unit
is realized by implementing two sigmoidal functions, sigmoid
and tanh functions, and the ReLU function. For the two SAFs,
we have utilized the piecewise linear approximation (PLA)
technique [44]. The work in [45] has also employed PLA for
approximating the non-linear activation functions, however,
it utilizes a fixed activation function and a fixed number of
segments and hence, used a direct transformation of yn to
f(yn) by shifting and adding constants to the values. Since
for relatively accurate approximation, the number of uniform
segments varies among applications and different ANN mod-
els, we design and implement a generalized realization of the
PLA by parameterizing the activation functions and ranges
of uniform segments. In our approach, the two SAFs are
uniformly segmented within yn ∈ [−5, 5]. As the functions
are symmetric, the coefficients of the piecewise linear approx-
imation are calculated for the input range [0, 5]. For an input
yn < 0, the output for the sigmoid and tanh functions are
given as fl(yn) = 1 − fl(|yn|) and ft(yn) = −ft(|yn|),
respectively. The logtanh function can be derived from the
logistic sigmoid function by first squaring the exponential
term e−yn , then scaling by two, and finally subtracting one
from the scaled and squared quotient. However, this approach
would require two approximations, one for e−x and one for
1
x , as opposed to only one. Moreover, because the hyperbolic

tangent requires squaring the exponential term, the piecewise
approximation would require more LUTs for relatively accu-
rate representation of the coefficients. Fig. 4 shows the mean
squared error (MSE) of the PLA for the logsig and logtanh
functions compared to their real-valued functions over various
number of uniform segments. Since the MSE decreases as the
number of segments approaches eight, we choose to implement
the PLA of the logsig and logtanh functions utilizing eight
uniform segments. The number of chosen segments may differ
for other applications.

MAC

× + R +

bias

ACF LPU_Outinputs

weights
LUT
RAM

R1

ACF_Sel

R2

Fig. 3. The LPU datapath.

2 4 6 8 10

Number of Segments

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

M
e
a
n

 S
q

u
a
re

d
 E

rr
o

r
(M

S
E

)

logsig

logtanh

Fig. 4. The mean squared error of the piecewise linear approximation of the
logistic sigmoid and hyperbolic tangent functions over varying numbers of
uniform segments.

Fig. 5 shows the ACF’s datapath. The module Abs passes the
two’s complement of input yn if yn < 0. The output of the

4

TABLE I
INSTRUCTION SET OF THE DESIGNED ANN PROCESSOR

Instruction Assembly format Description Instruction type
Add add $s1 $s2 $dst $dst = $s1 + $s2 V-type
Add immediate addi $s1 $dst imm $dst = $s1 + imm V-type
Subtract sub $s1 $s2 $dst $dst = $s1 - $s2 V-type
Subtract immediate subi $s1 $dst imm $dst = $s1 - imm V-type
Set source source code MEM_SEL = code N-type
Set function sfunc code ACF_SEL = code N-type
Load weights lw $raddr $node LPU_Bank[$node].weights = WeightMem[$raddr] N-type
Load all la $raddr LPU_Bank.inputs = Mem[$raddr] N-type
Load all except lax $raddr $LPU LPU_Bank[!$LPU].inputs = Mem[$raddr] N-type
Load single ls $raddr $LPU LPU_Bank[$LPU].inputs = Mem[$raddr] N-type
Write to memory wm $LPU $waddr NodeMem[$waddr] = LPU_Bank[$LPU].LPU_Out N-type
Write to register file wrf $LPU $waddr RegFile[$waddr] = LPU_Bank[$LPU].LPU_Out N-type
Branch on equal beq $s1 $s2 offset If $s1 == $s2, PC = PC + offset, else PC = PC + 1 C-type
Jump jump jumpTarget PC = jumpTarget C-type
No operation nop No Operation C-type

yn
+

0
1

yn[MSB]

Abs

Seg
Dec

× +
8 8

16

0

11

1

==

NS-1

−

0

1
z(yn)

CROML

CROMT

TC 0

1

0
1

ACF_SEL

M3
M2

M1

0

1

M4

ReLU
yn

Fig. 5. The ACF datapath.

module Abs is then passed to the segment decoder module
SegDec, which uses a series of comparators to determine
in which segment the input signal’s value |yn| lies. The
output of the segment decoder is then used as an address
for the read-only memories CROMT and CROML, which store
the coefficients of the piecewise linear approximations of
the tanh and sigmoid activation functions for each segment,
respectively. Because both SAFs are symmetric, only the
coefficients within [0, 5] are stored in the read-only memories
(ROMs). Due to the relatively small number of coefficients, the
ROMs are implemented using LUTs. The multiplexer on the
output of the ROMs is used to select which SAF to compute,
with the input select line ACF SEL. If ACF SEL is determined
to be fixed during run-time, the synthesis tool will remove the
unused ROM. The multiplier and adder compute the linear
approximation a|yn| + b, where the a and b coefficients are
obtained using the PLA of the activation functions. If the
input |yn| lies outside the range of the selected number of
segments NS, then the function has reached saturation, either
at 1 or −1 for tanh, or at 0 or 1 for sigmoid. Thus, the
output of the segment decoder is compared to NS. If the
saturation condition is not true, the saturation multiplexer M1
passes a|yn| + b. Note that for an input yn < 0 for tanh,
the output is −f(|yn|). Thus, the output of the saturation
multiplexer is passed to the two’s complement module TC,
which is implemented using an inverter and an adder, as shown
in the Abs block. For the sigmoid function, the output fl(yn)
for yn < 0 is 1 − fl(|yn|). The output of the saturation
multiplexer is thus passed to a subtractor. The output of the TC
module or the subtractor is selected using the multiplexer M2.
For both sigmoidal activation functions, the output depends on

the sign bit of the original input yn, which is used as the select
line for multiplexer M3. Ultimately the input ACF SEL is used
to select which of the activation functions’ outputs should be
passed as the output.

We define a set of instruction types and formats, as shown
in Fig. 6 for executing ANN operations using our application-
specific programmable processor architecture. Each instruction
is 28 bits: 4 bits are reserved for the operation code (opcode),
and the remaining 24 bits are reserved for different fields,
depending on the instruction type. The processor supports
three different instruction types: variable instructions (V-type),
network instructions (N-type), and control instructions (C-
type instructions). The V-type instructions are used to add
or subtract variables. The N-type instructions can be used to
interact with the LPU bank, such as providing input data to
LPUs and/or storing the output of the LPU bank into the AN
Mem. Finally, the C-type instructions support conditional and
unconditional branches. Table I gives the list of defined custom
instructions along with their assembly formats. The $R symbol
denotes the value stored in register R in the register file. The
immediate values are encoded in the instructions.

The programs for the processor use the instruction set
for loading weights into LPUs, applying inputs to LPUs
simultaneously, and writing the LPUs’ outputs into the AN
memory. Conditional and unconditional branches are used to
iteratively compute and store the AN outputs of each layer.
The ISA also supports RNNs. The key difference is that the
hidden layer outputs of the previous time step are applied to
the input of the hidden layer during the current time step.
As seen in Program 1, weight values are first loaded into the
LPUs. For the first time step, there are no previous hidden
layer outputs and the current hidden layer outputs are stored
in the AN Mem. For the second time step and beyond, the input
source is switched with the AN Mem after the network inputs
have been loaded into the LPUs. The LPU Bank accumulates the
weighted hidden layer outputs of the previous time step. For
the example RNN in Program 1, the output layer of the RNN is
only computed for the final time step, but this can be done for
every time step if required. Because RNNs require values from
the previous time steps, the total number of neurons that can
be implemented is half of those for feed-forward ANNs. While

5

LPUs store the current time step values into the AN Mem, the
previous values must also be maintained. Note that the ANNs
that can be implemented on a single FPGA are limited by the
amount of configurable resources, including on-chip memory
blocks and the operations supported by the LPUs.

Program 1. An example RNN program using our custom-developed ISA.
addi $0, $a0, 3 #0 -> 3 time steps
add $0, $0, $a1 #time step counter
addi $0, $c0, 1 #increment var.
sfunc 2 #use ReLU
addi $0, $b0, 10 #output neuron
addi $0, $b1, 9 #HL size
rnnStart:
source 0 #source is input mem.
add $0, $0, $b2 #HL counter
HLWL:
lw $b2, $b2 #WeightMem.b2 -> LPUBank.b2
beq $b2, $b1, loadIMem
add $c0, $b2, $b2 #inc. b2
jump HLWL
loadIMem:
la $a1 #InMem.a1 -> LPUBank.all
add $0, $0, $b2 #HL counter
beq $a1, $0, writeHL
source 1 #Prev. HL outputs
loadPrevHL:
la $b2 #ANMem.b2 -> LPUBank.all
beq $b2, $b1, zeroHL
add $c0, $b2, $b2 #inc. b2
jump loadPrevHL
zeroHL:
add $0, $0, $b2 #HL counter
writeHL:
wm $b2, $b2 #LPUBank.b2 -> ANMem.b2
beq $b2, $b1, OLCheck
add $c0, $b2, $b2 #inc. b2
jump writeHL
OLCheck:
beq $a1, $a0, OL
add $c0, $a1, $a1 #inc. a1
jump rnnStart
OL:
add $0, $0, $b2 #HL counter
lw $b0, $0 #WeightMem.b0 -> LPUBank.0
OLInputs:
ls $b2, $0 #ANMem.b2 -> LPUBank.0
beq $b2, $b1, writeOL
add $c0, $b2, $b2 #inc. b2
jump OLInputs
writeOL:
wm $0, $b0 #LPUBank.0 -> ANMem.b0

Implementation of programmable processors with custom
ISAs for neural network applications have been reported
previously in [15], [18]–[20]. The work in [18] presents a
16-bit reduced instruction set (RISC) processor. The processor
operates using a linear array of an undisclosed number of pro-
cessing units (PUs). Depending on the available memory, each
PU can support a number of PEs, with each PE supporting up
to 64K of virtual interconnects. The defined 16 instructions
provide the processing required by ANN algorithms. All
instructions are one-word long with the same format consisting
of a 4-bit operation code field and a 12-bit immediate/address
field. Each of the supported 16 instructions require a different
number of memory accesses and hence, cannot maintain
single-cycle execution of instructions. To maintain single-cycle
execution for most of the instructions, the authors have adopted
a dual-phase, non-overlapping clocking scheme with mem-

N-type source/

sfunc
opcode xx code

4-bit 22-bit 2-bit

laopcode src1 xx

4-bit 8-bit 16-bit

laxopcode src1 excl xx

4-bit 8-bit 8-bit 8-bit

lsopcode src1 dst xx

4-bit 8-bit 8-bit 8-bit

wm/

wrf
opcode src1 dst xx

4-bit 8-bit 8-bit 8-bit

C-type beq

jump

opcode src1 src2 offset

4-bit 8-bit 8-bit 8-bit

opcode jumpTarget

4-bit 24-bit

opcode src1 src2 dst

4-bit 8-bit 8-bit 8-bit

V-type add/

sub

addi/

subi
opcode src1 src2 imm

4-bit 8-bit 8-bit 8-bit

Fig. 6. Instruction types and their formats for the designed ANN processor.

ory accesses occurring at each clock phase. Our processor,
however, does not need to leverage dual-phase clocking to
maintain a single-cycle execution of instructions. Moreover,
while our target application places an upper bound on the
number of PEs supported, the bound with regards to the
number of interconnects is limited by the available memory
space, not the number of employed PEs. Unfortunately, the
authors in [18] have not implemented their design on an actual
device, so we cannot compare our implementation results. The
ISA in [19] supports similar instructions as in our designed
ISA, however, more complex instructions are supported for
performing convolution layers, pooling layers, and activation
functions required for acceleration of DNNs, which makes
their processor architecture more complex. Note that the target
application of [19] is FPGA acceleration of DNNs, whereas
our ANN processor utilizes a simpler ISA for area and power-
constrained embedded system applications.

The applicability of ANNs toward area- and power-
constrained embedded applications thus leads to the need
for such application-specific integrated processors (ASIPs) for
ANN computation. The two previously reported ASIPs in [15],
[20] utilize dedicated custom instruction set architectures for
ANN operations. In [20], the authors utilize an architectural
description language (ADL) to automate the generation of
synthesizable descriptions of their hardware architectures and
the required software tools (assembler, linker, and compiler)
for their designed ASIP. Their ASIP is a 4-stage pipelined
processor and their main processing elements are 32 multiply-
and-accumulate units. Their design focuses on the implemen-
tation of multi-layer perceptrons on a Zynq FPGA using a
user-defined non-linear activation function. The ANN ASIP
presented in [15] contains a central processing unit for fetching
and decoding the instructions from the memory. The supported
activation functions are implemented using non-uniform linear
approximation. A 16-word register file is utilized for both

6

TABLE II
THE ASIC CHARACTERISTICS AND IMPLEMENTATION RESULTS OF VARIOUS NEURAL NETWORK PROCESSORS

Clock Power Power
Work Network Technology Voltage (V) (MHz) Area (mm2) Throughput (mW) Density
[10] DNN 65–nm 1.2 200 4.4 51.2 GOPS 141.4 32 mW/mm2

[11] DNN 65–nm 1.2 200 3.52 51.2 GOPS 126 35 mW/mm2

[12] DNN 28–nm 0.6 ∼ 0.9 20 ∼ 400 4.8 410 ∼ 3270 GOPS 3.4 ∼ 20.8 0.66 ∼ 4.33 mW/mm2

[13] CNN/RNN 65–nm 0.77 ∼ 1.1 50 ∼ 400 16 - 34.6 ∼ 279 2.16 ∼ 17 mW/mm2

[15] FF 130–nm – 4 0.000384 5.665 kOPS 0.153 398 mW/mm2

Ours FF/RNN 32–nm 1.6 74 2.23 74 MOPS 1.25 0.56 mW/mm2

general purpose registers as well as control registers.

We have implemented our designed ANN processor for
moderately-sized ANNs (up to 512 ANs with 262,000 in-
terconnections) using the ASIC design flow. The ASIC has
been implemented using the Synopsys design kit for a 32-nm
CMOS process with a 1.6V supply voltage. Synthesis is per-
formed using Synopsys Design Compiler and place-and-route
is done with Synopsys IC Compiler. The memory units are
implemented using the SRAM standard cells available in the
Synopsys design kit. For supporting an arbitrary interconnect
structure, the potential fanout of a neuron can be relatively
large and hence, increasing the maximum number of supported
ANs would directly increase the memory requirement and
thus, the silicon area of the ANN ASIC. The chip layout of the
designed ANN processor is shown in Fig. 7. The ANN proces-
sor ASIC layout is estimated to occupy an area of 2.23 mm2

and consume 1.25 mW of power while operating at 74 MHz.
Even though the maximum number of neurons and synapses,
the activation functions, and the neural network operations are
fixed after the chip fabrication, the ANN machine program that
is loaded into the instruction memory of the processor can be
readily updated to realize various neural networks. As can be
seen in Fig. 7, the weight memories consume a significant
portion of the silicon area, due to the processor’s support for
arbitrary interconnect structures. Comparing our ASIC imple-
mentation results with recently implemented neural recording
and/or stimulation brain implants [46]–[48] suggests that the
designed ANN processor architecture can be used for in-vivo
processing of brain neural signals, such as decoding motor
signals to control a prosthesis [49]. The brain-implantable
recording system presented in [46] was implemented using
180-nm CMOS technology. It consumes 10.57 mm2 of silicon
area and 1.45 mW of power while the internal digital controller
is operated at 60 MHz. Another neural recording system is
presented in [47], and it was implemented using 130-nm
CMOS technology. It consumes 45.7 mm2 of silicon area and
13.54 mW of power while the internal digital controller is
operated at 93.6 MHz. Finally, the recording and stimulation
neural interface presented in [48] was implemented in 350-
nm CMOS. It performs optogenetic stimulation and consumes
4.21 mm2 of silicon area and 13.4 mW of power while
operating the digital control unit at 12 MHz. It can be seen that
our implemented design fits within the safe brain-implantable
margins in regards to power consumption and die area. While
strict power dissipation constraints limit the amount of in-
vivo processing, our designed ASIC meets the tissue-safe
requirements with a power density of 0.56 mW/mm2 [50].

Weight
Memory

Weight
Memory

Weight
Memory

Input
Memory

Instr.
Mem.

Node
Mem.

Bias
Mem.

Datapath

mm
1.49

1
.49

Fig. 7. ASIC layout of the designed ANN processor.

Table II gives the ASIC characteristics and implementation
results of various state-of-the-art programmable neural net-
work processors. The work in [10] presents a DNN training
processor for real-time object tracking. The processor was
specifically designed for high-throughput applications. The
work in [11] also presents a DNN processor for object
tracking with on-chip learning. Their design was optimized for
processing convolutional layers and their processing elements
perform MAC operations using matrix-vector multipliers and
adder trees. The work in [12] implemented a reconfigurable
processor for a DNN using binary and ternary weights so
the architecture does not require any multipliers. The work
in [13] presents a processor-implementation for CNNs and
RNNs for high performance computation. The processor in
[13] has been optimized for hardware acceleration of large
ANNs. The work in [14] presents a DNN processor for
datacenter-based applications. The DNN processor, named
Project Brainwave (BW) utilizes a neural processing unit
(NPU) to perform vector- and matrix-based operations. One
of the key features of the BW NPU is what the authors refer
to as instruction chaining, i.e., most instructions expect (and
produce) input (and output) arguments. This allows a sequence
of instructions in which the output of the current instruction
is passed to the next instruction. This enables the micro-
architecture to avoid costly memory read and write operations,
thus optimizing their design for high-performance computing.

7

Their target platform was the Intel Stratix 10 280 FPGA,
which consumes 125 W of power with a peak throughput
of 35.875 TFLOPS. While these processors focused on high-
throughput applications utilizing relatively large neural net-
works, such as CNNs and DNNs, our focus is on the design
of an efficient programmable ANN processor for realizing
moderately-sized ANNs used in area- and power-constrained
embedded applications. The ASIP presented in [15] was also
implemented in a standard 130-nm CMOS technology. Their
power consumption is directly related to a significantly lower
operating frequency of 4 MHz compared to our 74 MHz
operating frequency. Moreover, their reported throughput is
significantly less than our design’s throughput. As given in
Table II, our designed and implemented programmable ANN
processor is ideal for relatively small to moderately-sized
neural networks, commonly employed in the area- and power-
constrained embedded applications, such as battery-powered
wearable devices and mobile handsets. We presented one such
application for the in-vivo real-time processing of the brain’s
neural signals in [51]. Because the designed ANN processor
meets the brain tissue’s stringent limitations of the silicon area
and power consumption for implantable devices, it can be
utilized for the in-vivo real-time processing of neural signals,
which can then be used to control a prosthetic arm [52]. While
the other ANN realizations given in Table II offer greater com-
putational throughputs, their high power consumptions make
them infeasible for power-constrained embedded applications.

III. DEDICATED RECONFIGURABLE ANN HARDWARE

In order to verify and assess the efficiency of the designed
programmable ANN processor, we have designed and imple-
mented a dedicated hardware architecture for the direct imple-
mentation of ANNs. Using our custom-developed MATLAB
interpreter, a given ANN specification is directly converted
into its equivalent Verilog HDL description. This allows a
dedicated hardware architecture to be readily developed for
an arbitrary ANN topology. While the generated Verilog
description is for the realization of the specified ANN only,
the designed and implemented programmable processor can
be utilized for realizing an arbitrary ANN specification by
updating a new ANN program and a new set of values for
the weight and activation function parameters. The dedicated
hardware architecture can be reconfigured to support an arbi-
trary ANN configuration by specifying the number of layers,
the number of ANs per layer, the interconnect structure, and
the fixed-point format of signals. The principal processing
elements (PEs) of an ANN are the ANs. An AN calculates
the sum of the weighted inputs according to Equation (1) and
computes the activation function value based on the calculated
weighted sum. Because the number of inputs to a particular
AN may vary among applications, we have designed a fully-
parameterizable datapath for the AN. Since the target embed-
ded devices typically have limited computational resources, for
a compact implementation of the ANs, we employ the resource
sharing technique, as shown in Fig. 8, to greatly reduce the
number of PEs required to compute the sum of weighted
inputs. Two shift registers, which support parameterizable

depths, receive the inputs and pass an input-weight pair to
the registered multiply-and-accumulate MAC unit serially. The
control unit CU is implemented using a finite state machine
(FSM) and counts the number of inputs that have been given to
MAC. Once all of the weighted inputs have been accumulated,
the register MR is enabled to pass the weighted inputs to the
bias adder. Finally, the biased and weighted sum is passed as
an input to the activation function module ACF , which can be
configured to support the ReLU, sigmoid, or tanh activation
functions, and its output is written into the output register
OR. Utilizing resource sharing for a compact realization of
ANNs, the output will be ready after a latency of Mn + 2
clock cycles, where Mn denotes the number of inputs to the
n–th AN. The control unit CU asserts the hand-shaking signal
Ready , which informs the main controller that the output of an
AN is available. The control unit also receives a control signal
start from the main controller, which initializes the process
of accumulating the weighted inputs, as well as resetting the
output register of the MAC unit.

MAC

× + D +

Bias

D
MR

f(y)

SAF
Output

CU Ready

Input
Bus

Weight

D
OR

Start

0 1 2 ... n

D

RAM

f(y)

RELU

0

1

M1

Fig. 8. Datapath of an artificial neuron utilizing resource-sharing for compact
implementation.

Table III gives the characteristics and implementation results
of a 20-input AN using 20-bit inputs, 12-bit weights, and a 32-
bit accumulator when utilizing either a SAF or the ReLU on
a Xilinx Artix-7 FPGA. Each of the SAFs is implemented
using 8 segments. The coefficients of the piecewise linear
approximations are stored in the (WI, WF) = (1, 7) fixed-point
format using one sign bit for the integer part and 7 bits for
the fractional part. The output of the multiplier uses the larger
number of the WI and WF bits to avoid overflow errors. For
example, if the input format is (6, 14) and the coefficients are
stored in the (1, 7) format, the intermediate signals would be
represented in the (6, 14) format. For the sigmoidal activation
functions, the output signal is always bounded between -1 and
1 and thus, the output’s WI can be represented by using only
two bits.

TABLE III
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF A 20-INPUT
ARTIFICIAL NEURON USING 20-BIT INPUTS, 12-BIT WEIGHTS, AND A

32-BIT ACCUMULATOR ON A XILINX ARTIX-7 FPGA

ACF Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)
Sigmoidal 240 (0.09) 198 (0.15) 3 (0.71) 173

ReLU 104 (0.04) 80 (0.06) 1 (0.14) 394

Fig. 9 shows the block diagram of the designed dedicated
ANN hardware, which supports a parameterizable number
of ANs in the input and output layers, variable number of
hidden layers, and variable number of ANs per hidden layer.
The number of network inputs and network outputs is also

8

Input/Hidden
Layers

n1

n2

nj

n1

n2

nj

n1

n2

nj

AN1

AN2

ANj

AN1

AN2

ANj

Output Layer

ANN
Output

Configurable Interconnect

ANN
Input

Fig. 9. Block diagram of the dedicated reconfigurable ANN architecture.

parameterizable and can be specified by the user. The fixed-
point numerical representation of input, intermediate, and
output signals of an ANN and also its weight and bias values
can be parameterized. The dedicated ANN hardware can be
reconfigured to support an arbitrary interconnect structure
among ANs, which allows modeling both classical feed-
forward neural networks as well as dynamic recurrent net-
works. The values of weights and biases are stored in a register
bank. The activation function of each individual layer can be
chosen from the three designed activation functions. While our
dedicated ANN hardware architecture is fully parameterizable,
after synthesizing the design and implementing the ANN
hardware on a target device, the architecture cannot be altered
to realize a different ANN and is hence referred to as a
dedicated hardware. Note that in our dedicated ANN hardware,
the ANN parameters, i.e., weight and bias values, are stored
in on-chip memory units (i.e., using BRAMs and LUTs on
FPGA devices and SRAM macro cells on ASICs) rather than
in off-chip memory modules. Therefore, the size of ANNs that
can be realized is directly proportional to the total number
of configurable resources and storage elements available on
the target device. Utilizing on-chip storage elements, however,
removes the need for off-chip memory and eliminates the
memory bandwidth bottleneck.

IV. DESIGN VERIFICATION AND
BENCHMARK RESULTS

The design flow for the implementation of the pro-
grammable ANN processor is as follows: (1) The instruction
set architecture, which includes the required operations, the
register set, and the assembly and machine instruction sets, is
defined; (2) The microarchitecture of the processor is designed
and described in Verilog HDL. The functional verification of
the custom microarchitecture is performed using the Xilinx
Vivado design suite; (3) For a given ANN, an assembly
program is written and translated into its equivalent machine-
level instructions using a custom developed interpreter. For
fully-connected feed-forward ANNs, an interpreter is devel-
oped to translate the ANN description into its equivalent
assembly code and subsequently, its machine-level instruc-
tions; (4) Functional verification is performed by simulating
the programmable ANN processor on a Xilinx Artix-7 FPGA
using the Vivado design suite. The ANN outputs are verified
using a custom-developed graphical user interface for various
benchmarks; (5) After functional verification, the ASIC flow

begins with synthesizing the ANN processor description in
Verilog HDL using Synopsys Design Compiler; (6) Synopsys
IC Compiler is then used to perform placement and routing of
the synthesized netlist; (7) After static timing analysis of the
post-placed and routed design, the netlist is again simulated
using Synopsys VCS for verification. To verify the designed
programmable ANN processor and the dedicated reconfig-
urable ANN hardware and compare their characteristics and
implementation results on a Xilinx Artix-7 FPGA, we utilize
two ANN benchmarks.

We implemented the handwritten digit recognition bench-
mark using the MNIST dataset [40]. Fig. 10 shows the labora-
tory setup for verifying the functionality of the designed ANN
architectures. The dataset is provided as 28×28 pixel grayscale

Fig. 10. The laboratory setting for testing the programmable ANN processor
and the dedicated reconfigurable ANN architecture.

images and the target outputs are provided as digits denoting
the number shown in the image. To provide the network with
the entire image, the rows of the image are concatenated to
form a 1×784 image vector. The target data matrix included in
the dataset provides the correct digit, represented in decimal,
for each corresponding column test vector. However, due to
the nature of the bounded ACFs, we have redefined the target
data as 10-row column vectors. Rows 1 through 9 of the
target matrix columns refer to a recognized digit 1 through 9,
respectively, and the tenth row refers to a recognized digit 0.
Thus, the columns of the target data matrix have a single 1 and
the rest are 0s. For the network implemented using the tanh
SAF, the 0s are mapped to -1 to match the lower bound of the
activation function output. Some pre-processing on the input
data is also performed, such as mapping the input test vectors
to values between 0 and 1 for the sigmoid, and between -1 and
1 for the tanh activation function, to reduce input wordlengths
and avoid using overly large weight and bias values. We have
chosen a four layer model given as 784–20–15–10, where
784 is the number of inputs, and 20, 15, and 10 are the
number of ANs per layer, respectively. To obtain the optimal
values of weights and biases, we use MATLAB’s neural
network toolbox [53] to train the handwritten digit recognition
ANN. Since the ANN training for calculating the values of
weights and biases is performed offline, one can utilize various
training algorithms or machine learning frameworks, such as
Caffe [54], TensorFlow [55], and PyTorch [56]. There have
been considerable improvements in neural network training
methodologies, from reducing the memory requirements of
learned parameters via binarization [57], [58] to normalization

9

TABLE IV
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF THE DESIGNED ANN ARCHITECTURES ON A XILINX ARTIX-7 FPGA

Design Benchmark/ LUTs. (%) Regs. (%) BRAMs. (%) DSP48s. (%) Frequency Latency
Network topology (MHz) (Clock cycles)

Dedicated ANN MNIST 62695 (46.58) 206405 (76.67) 10 (2.74) 135 (18.24) 133 819
Hardware 784–20–15–10

Dedicated RNN Sentiment analysis (SA) 17547 (12.97) 35894 (13.33) 1.5 (0.41) 122 (16.49) 156 2800
Hardware 16–40–1 (50 time steps)

ANN Processor General-purpose 5064 (3.76) 553 (0.21) 20 (5.34) 30 (4.05) 62 MNIST – 1728
FF/RNN (1024 ANs) SA – 17285

approaches that significantly reduce the convergence time
for training [59]. The weights are represented in the (5,11)
fixed-point format. The processor’s instruction memory is
loaded with an 82-instruction program to execute the MNIST
operations. Fig. 11 shows the testing accuracy of the MNIST
ANN over various number of SAF segments. One can see that
using the logsig SAF results in a greater testing accuracy. As
stated in Section II, the preferred activation function can vary
among applications. Nevertheless, the designed programmable
ANN processor supports the logsig, logtanh, and the ReLU
activation functions.

2 4 6 8 10 12

Number of Segments

80

85

90

95

100

T
e

s
ti

n
g

 A
c

c
u

ra
c

y
 (

%
) logsig

logtanh

Fig. 11. The testing accuracy of the MNIST ANN using the logsig activation
function and tanh activation functions over various number of SAF segments.

We have also implemented a RNN for sentiment analysis
of reviews from the internet movie database [60]. The RNN
attempts to predict whether a review was positive or negative
for a particular movie. We utilized a three-layer RNN model
with 40 recurrent ANs with tanh activation functions and one
output AN with the sigmoid activation function. The input to
the RNN is a word vector of 16 elements and each review
consists of 50 word vectors. After processing the last word
vector, the sentiment is predicted by the output layer neuron.
The network parameters, such as the word embeddings, which
are numerical vectors that encode each word in the dataset
vocabulary, the weights, and the bias values, were obtained
using Tensorflow and Python and then converted into the
fixed-point numerical representation. The assembly program to
execute the sentiment analysis RNN consists of 79 instructions
to predict the sentiment of each review. Despite a relatively

small RNN of only 41 neurons, the network correctly predicts
80.66% of the 25,000 testing reviews.

Table IV gives the characteristics and implementation re-
sults of the dedicated reconfigurable ANN and RNN hardware
and the processor architecture on a Xilinx Artix-7 FPGA.
Because the dedicated hardware architecture is tied to a
specific ANN/RNN, we have listed the benchmark network
as well as the network topologies. The designed ANN pro-
cessor supports up to 1024 arbitrarily connected ANs and
has an LPU Bank with 10 LPUs. The latency in Table IV
refers to the number of clock cycles required to execute the
given benchmark. Dedicated hardware architectures for the
MNIST and sentiment analysis (SA) benchmarks compute
the network outputs in 6.1 µs and 17.9 µs, respectively. For
our ANN processor, the latency is directly related to the
number of operations executed in the program. For a fully
connected feed-forward ANN, the number of operations can
be given as

∑η
i=2

[
Si−1(d(Si/k)e)+2(Si)+ d(Si/k)e

]
+Sη ,

where η denotes the number of layers in the network, Si
denotes the number of inputs or ANs in the i-th layer, k
denotes the number of LPUs being used, and d·e denotes
the ceiling operator. For RNNs, the latency can be given
as
∑τ
i=2

[
Ni−1(d(Si/k)e) + 2(Si) + d(Si/k)e

]
+ Sη , where

N denotes the number of inputs to the recurrent layer at
a particular time step i, and τ denotes the number of time
steps. The ANN processor computes the MNIST and SA
network outputs after 27.8 µs and 270 µs, respectively. For a
fair comparison between the MNIST and SA dedicated ANN
hardware architectures, we compare their power and energy
consumptions while running at 100 MHz. The MNIST and
SA dedicated architectures consume 806 mW and 225 mW of
power, respectively. Given their execution times, the MNIST
and SA architectures have energy consumption rates of 6.6 µJ
and 6.3 µJ, respectively. The processor consumes 235 mW of
power while running at 62 MHz, and has energy consumption
rates of 6.53 µJ and 65.5 µJ for the MNIST and SA programs,
respectively. While the dedicated ANN hardware architectures
can execute their respective benchmarks considerably faster,
the processor architecture can support arbitrary ANNs by
changing their programs, while using significantly smaller sil-
icon area. For very small ANNs, the dedicated ANN hardware
may be more energy efficient, however, this requires a larger
silicon area for a dedicated hardware that is fixed for a specific
network after implementation.

Recent research has also focused on the FPGA implemen-
tation of SNNs [61], [62]. While the flexibility of SNNs make
them an attractive design choice for realization on FPGAs,

10

the employed neuron models, depending on their level of
biophysical accuracy, can result in a greater reconfigurable
resource utilization. For example, [61] and [62] both present
SNN hardware architectures supporting 1024 and 1440 neu-
rons, respectively, on Virtex FPGAs. However, their recon-
figurable resource utilization is significantly larger than that
of our proposed ANN processor. The design in [61] consumes
19397 (9%) LUTs, 32420 (15%) registers, 264 (81%) BRAMs,
and 16 (8%) DSP48s. The design in [62] consumes 55884
(37%) LUTs, 48502 (16%) registers, 392 (91%) BRAMs, and
408 (53%) DSP48s. While some applications, which require
time-insensitive processing, may employ SNNs, tasks such as
classification or pattern recognition can be efficiently realized
using the designed ANN processor with significantly fewer
resources.

V. CONCLUSION

This article presented a programmable processor with a cus-
tom instruction set architecture for the efficient realization of
artificial neural networks (ANNs). A dedicated reconfigurable
hardware for the direct implementation of ANNs was also pre-
sented. The ANN processor and the dedicated ANN hardware
both support various ANNs with an arbitrary number of layers,
number of artificial neurons (ANs) per layer, and arbitrary
interconnect structures, including feed-forward and recurrent
networks. The functionality and implementation results of both
designs on a Xilinx field-programmable gate array (FPGA)
were assessed and compared using two ANN benchmarks. The
ASIC implementation results of the designed ANN processor
confirms that our processor occupies smaller silicon area
compared to the other state-of-the-art processors and consumes
significantly less power. The designed programmable proces-
sor can be effectively used in area- and power-constrained
embedded applications utilizing moderately-sized ANNs.

ACKNOWLEDGMENT

This work was supported by the Center for Neurotechnology
(CNT), a National Science Foundation Engineering Research
Center (EEC-1028725).

REFERENCES

[1] S. Herculano-Houzel, “The human brain in numbers: a linearly scaled-up
primate brain,” Frontiers in Human Neuroscience, vol. 3, p. 31, 2009.

[2] A. Krizhevsky, I. Sutskever, G. E. Hinton, “ImageNet classification with
deep convolutional neural networks,” Advances in Neural Information
Processing Systems, vol. 25, pp. 1097–1105, 2012.

[3] M. Bojarski, et al., “End to end learning for self-driving cars,” Comput-
ing Research Repository, 2016.

[4] I. Sutskever, O. Vinyals, Q. V. Le, “Sequence to sequence learning with
neural networks,” in Neural Information Processing Systems, 2014, pp.
3104–3112.

[5] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman, “Return of
the devil in the details: Delving deep into convolutional nets,” arXiv
preprint arXiv:1405.3531, 2014.

[6] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 1 – 9.

[7] L. Huimin, X. Fan, L. Jiao, W. Cao, X. Zhou, L. Wang, “A high per-
formance FPGA-based accelerator for large-scale convolutional neural
networks,” in International Conference on Field Programmable Logic
and Applications, 2016, pp. 1 – 9.

[8] S. Venieris, C. Bouganis, “FPGAconvnet: A framework for mapping
convolutional neural networks on FPGAs,” in International Symposium
on Field-Programmable Custom Computing Machines, 2016, pp. 40 –
47.

[9] J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang,
N. Xu, and S. Song, “Going deeper with embedded FPGA platform for
convolutional neural network,” in ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, 2016, pp. 26 – 35.

[10] D. Han, J. Lee, J. Lee, S. Choi, and H.-J. Yoo, “A 141.4 mw low-
power online deep neural network training processor for real-time object
tracking in mobile devices,” in Proceedings of International Symposium
on Circuits and Systems, 2018.

[11] D. Han, J. Lee, J. Lee, and H. Yoo, “A low-power deep neural network
online learning processor for real-time object tracking application,” IEEE
Transactions on Circuits and Systems I: Regular Papers, pp. 1–11, 2018.

[12] S. Yin, P. Ouyang, J. Yang, T. Lu, X. Li, L. Liu, and S. Wei, “An
energy-efficient reconfigurable processor for binary- and ternary-weight
neural networks with flexible data bit width,” IEEE Journal of Solid-
State Circuits, pp. 1–17, 2018.

[13] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “14.2 DNPU: An 8.1 TOPS/W
reconfigurable CNN-RNN processor for general-purpose deep neural
networks,” in IEEE International Solid-State Circuits Conference, 2017,
pp. 240–241.

[14] J. Fowers et al, “A configurable cloud-scale dnn processor for real-time
AI,” in International Symposium on Computer Architecture, 2018, pp.
1–14.

[15] J. Rust and S. Paul, “Design and implementation of a neurocomputing
ASIP for environmental monitoring in WSN,” in IEEE International
Conference on Electronics, Circuits, and Systems, 2012, pp. 129–132.

[16] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE journal of solid-state circuits, vol. 52, no. 1, pp. 127–138,
2016.

[17] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and
evaluation of the first tensor processing unit,” IEEE Micro, vol. 38, no. 3,
pp. 10–19, 2018.

[18] P. Treleaven, M. Pacheco, and M. Vellasco, “VLSI architectures for
neural networks,” IEEE Micro, vol. 9, no. 6, pp. 8–27, 1989.

[19] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao,
A. Mishra, and H. Esmaeilzadeh, “From high-level deep neural models
to FPGAs,” in ACM/IEEE International Symposium on Microarchitec-
ture, 2016, pp. 1 – 12.

[20] D. Rakanovic and R. Struharik, “Implementation of application specific
instruction-set processor for the artificial neural network acceleration
using LISA ADL,” in IEEE East-West Design & Test Symposium, 2017,
pp. 1–6.

[21] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[22] S. Hamdioui, S. Kvatinsky, G. Cauwenberghs, L. Xie, N. Wald, S. Joshi,
H. M. Elsayed, H. Corporaal, and K. Bertels, “Memristor for computing:
Myth or reality?” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2017. IEEE, 2017, pp. 722–731.

[23] C. Pandarinath et al., “High performance communication by people with
paralysis using an intracortical brain-computer interface,” eLife, vol. 6,
pp. 1–27, 2017.

[24] J. R. Wolpaw and D. J. McFarland, “Control of a two-dimensional
movement signal by a noninvasive brain-computer interface in humans,”
in Proceedings of the National Academy of Sciences, 2004, pp. 17 849–
17 854.

[25] R. P. Rao, “Towards neural co-processors for the brain: combining
decoding and encoding in brain-computer interfaces,” Current Opinion
in Neurobiology, vol. 55, pp. 142 – 151, 2019.

[26] E. Fetz, “Dynamic neural network models of sensorimotor behavior,” in
The Neurobiology of Neural Networks. MIT Press, 1993, ch. 7, pp.
165–190.

[27] M. Velliste, S. Perel, M. C. Spalding, A. S. Whitford, and A. B.
Schwartz, “Cortical control of a prosthetic arm for self-feeding,” Nature,
vol. 453, no. 7198, p. 1098, 2008.

[28] L. R. Hochberg et al., “Reach and grasp by people with tetraplegia using
a neurally controlled robotic arm,” Nature, vol. 485, no. 7398, p. 372,
2012.

[29] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions
on neural networks, vol. 14, no. 6, pp. 1569–1572, 2003.

11

[30] ——, “Which model to use for cortical spiking neurons?” IEEE Trans-
actions on neural networks, vol. 15, no. 5, pp. 1063–1070, 2004.

[31] P. A. Merolla et al., “A million spiking-neuron integrated circuit with a
scalable communication network and interface,” Science, vol. 345, no.
6197, pp. 668–673, 2014.

[32] C. Frenkel, M. Lefebvre, J. Legat, and D. Bol, “A 0.086-mm2 12.7-
pj/sop 64k-synapse 256-neuron online-learning digital spiking neuro-
morphic processor in 28-nm CMOS,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 13, no. 1, p. 145, 2019.

[33] R. Brette et al., “Simulation of networks of spiking neurons: A review of
tools and strategies,” Journal of Computational Neuroscience, vol. 23,
no. 3, pp. 349–398, 2007.

[34] G. Indiveri, F. Corradi, and N. Qiao, “Neuromorphic architectures for
spiking deep neural networks,” in 2015 IEEE International Electron
Devices Meeting (IEDM). IEEE, 2015, pp. 4–2.

[35] C. Frenkel, J.-D. Legat, and D. Bol, “Morphic: A 65-nm 738k-
synapse/mm2 quad-core binary-weight digital neuromorphic processor
with stochastic spike-driven online learning,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 13, no. 5, pp. 999–1010, 2019.

[36] G.-q. Bi and M.-m. Poo, “Synaptic modification by correlated activity:
Hebb’s postulate revisited,” Annual review of neuroscience, vol. 24,
no. 1, pp. 139–166, 2001.

[37] S. R. Kheradpisheh and T. Masquelier, “S4nn: temporal backpropagation
for spiking neural networks with one spike per neuron,” arXiv preprint
arXiv:1910.09495, 2019.

[38] J. Göltz, A. Baumbach, S. Billaudelle, O. Breitwieser, D. Dold,
L. Kriener, A. F. Kungl, W. Senn, J. Schemmel, K. Meier et al., “Fast
and deep neuromorphic learning with time-to-first-spike coding,” arXiv
preprint arXiv:1912.11443, 2019.

[39] M. Pfeiffer and T. Pfeil, “Deep learning with spiking neurons: opportu-
nities and challenges,” Frontiers in neuroscience, vol. 12, p. 774, 2018.

[40] Y. Lecun, C. Cortes, C. Burges, The MNIST Database, available at
yann.lecun.com/exdb/mnist/.

[41] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,” Physical Review E, vol. 64, no. 6,
pp. 1–8, 2001.

[42] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Mathematics of Control, Signals, and Systems, vol. 2, pp. 303–314, 1989.

[43] N. Gershenfeld, The Nature of Mathematical Modeling. Cambridge
University Press, 1999.

[44] J. M. Muller, Elementary Functions: Algorithms and Implementation.
Birkhauser, 2006.

[45] H. Amin, K. M. Curtis, B. R. Hayes-Gill, “Piecewise linear approxima-
tion applied to nonlinear function of a neural network,” in Proceedings
of IEEE Circuits, Devices, and Systems, 1997, pp. 313 – 317.

[46] C. M. Lopez et al., “An implantable 455-active-electrode 52-channel
CMOS neural probe,” IEEE Journal of Solid State Circuits, vol. 49,
no. 1, pp. 248–261, 2014.

[47] ——, “A neural probe with up to 966 electrodes and up to 384
configurable channels in 0.13-µm SOI CMOS,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 11, no. 3, pp. 510–522, 2017.

[48] R. Ramezani et al., “On-probe neural interface ASIC for combined
electrical recording and optogenetic stimulation,” IEEE Transactions on
Biomedical Circuits and Systems, vol. 12, no. 3, pp. 576–588, 2018.

[49] S. Micera et al., “Decoding of grasping information from neural
signals recorded using peripheral intrafascicular interfaces,” Journal of
NeuroEngineering and Rehabilitation, vol. 8, no. 1, pp. 1–10, 2011.

[50] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, “Thermal
impact of an active 3-D microelectrode array implanted in the brain,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 15, no. 4, pp. 493–501, 2007.

[51] D. Valencia, J. Thies, and A. Alimohammad, “Frameworks for efficient
brain-computer interfacing,” IEEE Transactions on Biomedical Circuits
and Systems, vol. 13, no. 6, pp. 1714–1722, 2019.

[52] M. Kocaturk, H. O. Gulcur, and R. Canbeyli, “Toward building hybrid
biological/in silico neural networks for motor neuroprosthetic control,”
Frontiers in Neurorobotics, vol. 9, p. 8, 2015.

[53] M. Beale, M. Hagan, H. Demuth, Neural Network Toolbox User’s Guide,
MathWorks, 2017.

[54] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in Proceedings of the ACM international
conference on Multimedia, 2014, pp. 675–678.

[55] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, and M. Isard, “Tensorflow: a system for large-
scale machine learning.” in Symposium on Operating Systems Design
and Implementation, vol. 16, 2016, pp. 265–283.

[56] N. Ketkar, “Introduction to pytorch,” in Deep learning with python.
Springer, 2017, pp. 195–208.

[57] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[58] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems, 2016, pp. 4107–4115.

[59] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[60] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proceedings of the
49th annual meeting of the association for computational linguistics:
Human language technologies-volume 1. Association for Computa-
tional Linguistics, 2011, pp. 142–150.

[61] W. Luk, D. Thomas, “FPGA accelerated simulation of biologically
plausible spiking neural networks,” in IEEE Symposium on Field Pro-
grammable Custom Computing Machines, 2009, pp. 45–52.

[62] D. Pani et al., “An FPGA platform for real-time simulation of spiking
neuronal networks,” Frontiers in Neuroscience, vol. 11, no. 90, pp. 1–13,
2017.

Daniel Valencia is a Research Assistant working
in the VLSI Design and Test Laboratory in the
Department of Electrical and Computer Engineering
at the San Diego State University. He is currently
pursuing the Ph.D. degree in Electrical and Com-
puter Engineering at the University of California,
San Diego, and the San Diego State University.
His research interests include field-programmable
gate arrays, brain-computer interfacing, and VLSI
architectures for neural signal processing.

Saeed Fouladi Fard received the M.Sc. degree
in Electrical Engineering from the University of
Tehran, Iran, in 2003, and the Ph.D. degree in
Electrical and Computer Engineering from the Uni-
versity of Alberta, Canada, in 2009. Currently he is a
Principal Engineer at Eidetic Communications Inc.,
a company that he co-founded in 2016. Since 2008,
he has been working as a digital design engineer
at Ukalta Engineering Inc., Rad3 Communications,
PMC-Sierra (now Microchip) and Eidetic Commu-
nications Inc. His work on SerDes and error control

codes are parts of several VLSI chipsets used by major Internet companies. His
research interests include data compression and encryption, machine learning,
high-performance computing, error control coding, high-speed SerDes, digital
communications, and efficient hardware computation techniques.

Amir Alimohammad is an Associate Professor in
the Electrical and Computer Engineering Depart-
ment at the San Diego State University. He was
the Co-Founder and Chief Technology Officer of
Ukalta Engineering in Edmonton, Canada, from
2009-2011. He obtained a Ph.D. degree in Electrical
and Computer Engineering from the University of
Alberta in Canada. His research interests include
digital VLSI design, brain-computer interfacing, and
wireless communication.

