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Abstract—One challenge present in brain-computer interface
(BCI) circuits is finding a balance between real-time on-chip
processing in-vivo and wireless transmission of neural signals
for off-chip in-silico processing. This article presents three po-
tential frameworks for investigating an area- and energy-efficient
realization of BCI circuits. The first framework performs spike
detection on the filtered neural signal on a brain-implantable
chip and only transmits detected spikes wirelessly for offline
classification and decoding. The second framework performs in-
vivo compression of the on-chip detected spikes prior to wireless
transmission for substantially reducing wireless transmission
overhead. The third framework performs spike sorting in-vivo
on the brain-implantable chip to classify detected spikes on-chip
and hence, even further reducing wireless data transmission rate
at the expense of more signal processing. To alleviate the on-chip
computation of spike sorting and also utilizing a more area- and
energy-effective design, this work employs, for the first time, to
the best of our knowledge, an artificial neural network (ANN)
instead of using relatively computationally-intensive conventional
spike sorting algorithms. The ASIC implementation results of
the designed frameworks are presented and their feasibility
for efficient in-vivo processing of neural signals is discussed.
Compared to the previously-published BCI systems, the pre-
sented frameworks reduce the area and power consumption of
implantable circuits.

I. INTRODUCTION

The brain continuously controls an extraordinary amount
of bodily function. Voluntary movement, for example, is
primarily controlled through the activity of nerve cells, known
as neurons, in the motor cortex region of the brain. For
voluntary movement, the brain’s neural signals are sent down
the spinal cord to control the contraction of certain mus-
cles. However, spinal cord injury and other neurodegenera-
tive diseases can impede the natural ability of the brain to
communicate through the neural pathways. To restore bod-
ily functions, brain-implantable integrated circuits have been
used to record and potentially decode neural signals. Brain-
computer interfaces (BCIs) refers to the microsystems capable
of recording neural signals, performing signal processing, and
transmitting data off-chip for further processing, thus offering
a secondary pathway for neural signals. Each BCI channel
typically samples at around 20 – 24 KHz [1], with 8 to
24 bits resolution for the analog-to-digital (ADC) converter
[2], [3] to avoid losing high frequency elements of neural
signals. A system with 64 channels, each channel sampling
at 20 KHz, creates 1.28 MSamp./second. This corresponds
to output data rates ranging from 10.24 to 192 Mbps and
correlates to power consumption rates in the mW range [4]–
[8], which imposes serious limitations, such as the potential
threat of heat-related tissue damage. A trade-off is inevitably
present between the power consumption of on-chip neural

signal processing and that of wireless data transmission for
off-chip classification and decoding. An important question
thus arises regarding whether it is more efficient to process
neural data on-chip and transmit only compressed or classified
spikes, or is it more efficient to transmit data after mini-
mal or partial processing? By efficiently performing neural
signal processing directly at the recording site using braing-
implantable integrated circuits, the wireless transmission rates
can be drastically reduced, thus relaxing the requirements on
the wireless transmission. To evaluate the efficiency of the BCI
system configurations, three frameworks, as shown in Fig. 1,
are designed, implemented, and compared. Framework I uses
a spike detector in-vivo to reduce the data transmission by
sending only detected spikes for off-chip classification and
decoding. The second potential framework for minimizing
energy is to apply spike compression on a brain-implantable
chip. By exploiting the sparsity of neural signals, the data
rate, and hence, energy dissipation, through the skull can be
substantially reduced. Framework III performs spike sorting
on-chip to even further reduce wireless transmission of data for
off-chip decoding at the expense of more on-chip processing
in-vivo. Spike sorting is the process of separating the activities
of individual neurons, i.e., determining which neural action
potentials, referred to as spikes, correspond to which neurons.
Because the computational and energy requirements of certain
spike sorting algorithms may not be suitable for area- and
power-constrained applications, alternative approaches must be
exploited and their relative area and energy dissipation must be
analyzed. The main goal of the three BCI frameworks shown
in Fig. 1 is thus to investigate an optimal balance between on-
chip neural signal processing and wireless data transmission
such that the total energy dissipation of the brain-implantable
chip is minimal.

The rest of this article is organized as follows. Section
II presents the spike detection, compression, and sorting
schemes utilized in Frameworks I, II, and III, respectively. The
hardware architecture of the spike detection, compression, and
sorting are presented in Section III. Section IV presents the
ASIC characteristics and implementation results of the three
designed frameworks. The implemented frameworks are also
compared with the state-of-the-art ASIC implementations of
BCI systems and the feasibility of the presented frameworks
for in-vivo signal processing is discussed. Finally, Section V
makes some concluding remarks.

II. FRAMEWORK CONFIGURATIONS

A. Spike Detection
Instead of transmitting sampled raw neural signals for

off-chip (in-silico) signal classification and decoding, which
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Fig. 1. Potential frameworks for area- and energy-efficient BCI systems.

could be unacceptable for BCI systems with a relatively large
number of recording channels, one approach to reduce the
output data rate, and hence, wireless transmission energy
dissipation, is to detect neural action potentials (spikes) on
a chip in-vivo and only transmit detected spikes wirelessly for
further processing in-silico. An action potential is defined as
the spiking activity of neurons, and this level of recording is
known as single unit recording. This approach is shown in
Framework I in Fig. 1. Spike detection is a two-step process
in which action potentials are identified from ambient neural
noise. First, a pre-emphasis operation is performed to prepare
the signal for the second step, which is thresholding. Various
algorithms have been proposed for pre-emphasizing neural
signals, such as the absolute value operator [9], the non-linear
energy operator (NEO) [10], and the discrete wavelet trans-
form (DWT) [11]. In the thresholding step, the pre-emphasized
signal is then compared to a threshold value. The presence
of a spike can be inferred when the pre-emphasized signal
crosses the threshold. For simpler hardware implementation,
some designs avoid pre-emphasizing the neural signal and
the thresholding is performed directly on the signal, which is
referred to as the voltage threshold detection method [12]. By
avoiding pre-emphasis, the voltage threshold detection method
can be implemented without using multipliers, which lends
itself to an area-efficient hardware implementation. However,
for a more robust spike detection, we have designed and
implemented the NEO algorithm. NEO is defined as:

ψ(x[n]) = x[n]2 − x[n− 1]× x[n+ 1], (1)

where x[n] denotes the neural signal at time n. The result is
only large when the signal is both large in power (x[n]2) and
in frequency (x[n] is large while both x[n − 1] and x[n + 1]
are small).

B. Spike Compression

While Framework I only transmits detected spike wave-
forms, a significantly larger reduction in output data rate can
be obtained by both performing spike detection as well as
reducing the number of samples required for representing

Fig. 2. An autoencoder with N = 4 and M = 2. The hidden layer
between the input and output layers is considered the bottleneck, which is
the point where the data is coded. Going from one layer to the next requires
weight matrix multiplication, bias vector addition, and activation function
computation.

the spike waveform, i.e., compressing the spike waveforms
on-chip in-vivo as shown in Framework II in Fig. 1. One
important design trade-off in compression techniques for BCIs
is the power consumption required for desirable signal recon-
struction quality. Compressed sensing (CS) has shown as being
a viable method for the compression of neural spikes [13]–
[16]. While CS algorithms offer high-quality reconstruction of
compressed signals, they require a relatively large number of
operations. An alternative approach is to utilize an autoencoder
[17], which is a type of artificial neural network (ANN)
trained so that the network’s output reproduces its input. Fig.
2 shows the signal flow graph (SFG) of a basic undercomplete
autoencoder. The first layer transforms the four inputs down
to two inputs. This part of the network is referred to as
the bottleneck, and is the point at which the data is coded
(compressed). The output layer of the SFG shows how the
compressed bottleneck outputs are used to reconstruct the
original input vector. w1 and w2 denote the transformation
matrices used to downsize the input vector to the bottleneck
output size, and to reconstruct the input vector from the output
of the bottleneck, respectively.

By placing constraints on the parameters of the autoencoder,
significant features of the dataset can be learned during the
network’s training. The fundamental building block of an ANN
is a neuron. Neurons typically accept a data vector x from
either the previous layer or the inputs, perform element-wise
multiplication with a weight matrix W, sum the products with
a bias b, and then pass the result through an activation function
f(
∑
wi,jxi + bi). In addition to input and output layers, neu-

rons constitute hidden layers. The input layer simply accepts
the input vector x and passes it to the first hidden layer. Hidden
layer computation can be defined as a matrix multiplication,
vector addition, and applying an activation function as:

y = f

(w1,1 . . . w1,N

...
. . .

...
wM,1 . . . wM,N


x1...
xN

+

 b1...
bM

),
where M and N denote the number of neurons in the hidden
and input layer, respectively. Generally the output layer pro-
cesses data in the same way as a hidden layer. One commonly
used activation function at the output layer is the Softmax
function [18], defined as f(xi) = exi/

∑
ex, which provides

the probabilities of each output classification. In general, the
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input and output of the autoencoder must be the same size
N . The hidden layer of size M in an autoencoder, known as
the bottleneck, is responsible for compression. Sending data
through an M -sized layer gives the compression ratio (CR)
N/M . The two primary elements of an autoencoder are the
encoder and decoder. The bottleneck and the layers preceding
it are referred to as the encoder and the remaining layers form
the decoder, which completes the neural network computation
to reconstruct an approximation of the input vector.

Fig. 3 shows the system-level block diagram of an au-
toencorder. For compressing a spike from N data points to
M data points, an M × N weight matrix W1 is multiplied
with the N × 1 vector representing the spike waveform. The
weight matrix is obtained via training and its values are stored
on-chip. The autoencoder can be trained to compress and
reconstruct a given type of data based upon what optimal
compression and expansion are learned from the data. For
compressing neural spikes, the designed autoencoder has a 64-
node input layer, and one hidden layer with 4 nodes. This re-
sults in a 16 times compression ratio. Because the autoencoder
has one hidden layer, the data is entirely compressed by the
first matrix multiplication. Thus, the only computation for on-
chip compression is a matrix multiplication. The matrix-vector
multiplication requires M×N multiplications and M×(N−1)
additions. The resulting M × 1 compressed neural spike is
then transmitted off-chip. As shown in Fig. 3, the off-chip
reconstruction requires two vector additions, two activation
function computations, and a matrix multiplication.
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Fig. 3. System-level block diagram of an autoencoder for spike compression.

C. Spike Sorting

To even further reduce the transmitted data, an alternative
approach is to perform spike sorting in-vivo. Spike sorting
is the process of identifying spike waveforms and attributing
them as being spikes emitted by specific neurons [12]. The
reduction in data rate associated with spike sorting comes from
the fact that the transmitted output is a small binary identifier
used to encode which group, or class, of neuron the spike was
emitted by. Fig. 4 shows the traditional processing steps for
off-line spike sorting. First, spikes are detected from ambient
noise in recorded neural signals. Spike detection is often per-
formed with the aforementioned voltage threshold method, the
absolute value method, or the NEO-based detection method.
The spikes are then aligned to a particular metric, such as
the point within the spike that has the highest amplitude or
highest slope, as it has been shown that the alignment of
the spike waveform can be crucial for the classification of
spikes [19]–[21]. Depending on the detection method used,
other alignment metrics such as maximum energy can also
be used. Once spikes have been detected and aligned, feature
extraction is employed. Feature extraction is a process in
which certain features of the detected spike waveforms are
selected and used as descriptors for those types of spike
waveforms [12]. The number of features used is fewer than
the number of samples used for the representation of the
spike waveform, thus performing dimensionality reduction.
Principal components analysis (PCA) [22] is a commonly
employed algorithm for finding discriminatory features present
in a collection of detected spike waveforms. However, because
of PCA’s computational complexity, it is often not considered
for implementation on a brain-implantable chip, and more
computationally-efficient feature extraction methods, such as
discrete derivatives [23] and the integral transform [24], are
considered for in-vivo realizations. The features can then be
visualized in a k-dimensional space, where k denotes the num-
ber of selected features. In this k-dimensional space, clusters
are formed, and the average of the cluster coordinates can be
used to represent that cluster. Various clustering methods have
been utilized for classifying spike features. Manual cluster
cutting [12] involves plotting the features in a scatter plot
followed by the manual formation of clusters by an operator.
In k-means clustering [25], an operator first defines k clusters
with random cluster centroids. The detected spikes are then
assigned to the closest cluster centroid by way of a distance
metric. The cluster centroids are then recalculated with every
assignment. Finally, each detected spike is assigned to a cluster
and an output spike train is reconstructed, which is a visual
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representation of both the times of neural spiking as well as
a cluster’s rate of spiking.

Other spike sorting approaches, such as the template match-
ing [26] and OSort [27] algorithms, eliminate the requirement
of the computationally-intensive feature extraction step alto-
gether. These methods can be thought of as utilizing κ number
of spike features, where κ denotes the number of samples
used for representing a spike waveform. In template matching-
based spike sorting, the average spike waveform of the clusters
(shown in the clustering step in Fig. 4) can be used as template
waveforms, which represent different spike shapes. Template
matching then uses a distance metric to quantify the similarity
between the detected spikes and the stored templates. If the
distance is within an acceptable margin, the spike is classified.
While various methods, such as manual cluster cutting and
k-means clustering, may be acceptable for off-line sorting,
they require operator intervention. The OSort algorithm [27],
however, continuously stores detected spikes into various
clusters using cluster averages computed on-the-fly in an
unsupervised fashion. As the clustering process continues, the
cluster averages converge toward the optimal representation of
the commonly occurring spike shapes as distinctly separable
clusters. For efficient spike sorting realization, in this work
we have taken an alternative approach to conventional methods
and designed an ANN specifically for spike classification. This
approach is similar in that each sample of the waveform can
be considered as a feature that is passed to the classification
ANN. The length of the input vector to the ANN and the
number of spike classes define the size of the input and output
layer, respectively. For our chosen application, 64 samples
were sufficient to hold an entire spike, meaning that the input
layer has 64 nodes. For three spike classes, the output layer of
the designed sorting ANN has three nodes. The ANN offers
a “best guess” as to which of the three spike classes the spike
belongs to. To reduce overall system complexity, the designed
ANN has one hidden layer with only one node.

Once the ANN topology has been established, it must be
trained for a given task to find optimal weight and bias
values. This is typically achieved through the process of
backpropagation [28], which adjust weights and biases to
minimize a loss function. The designed ANNs for compression
and sorting were trained and tested using six datasets with
different levels of noise and classification difficulty from
the publicly-avialable Wave Clus dataset [29]. To train the
ANNs, the spikes from each dataset were aligned to maximum
amplitude and divided into training and testing data. For
ANNs trained on data with Easy and Difficult classification
difficulties, there were 3,012 and 2,984 spikes, respectively.
A network was trained for every combination of parameters,
including classification difficulty, noise, and amount of data
used for training. Ten networks for each combinations of
parameters were trained using stochastic gradient descent [28]
over 400 epochs, then tested using 14-bit signed fixed-point
arithmetic with 6 integer bits and 8 fraction bits. Table I gives
the accuracy of the sorting ANNs for various datasets and
training characteristics. The best of the ten ANN classifiers for
each combination of parameters is given in each row of Table
I. It can be seen that increasing the amount of training data

has a small effect on the sorting accuracy, but the ANNs still
perform well with as little as 30% of data used for training.

TABLE I
ACCURACY OF THE SPIKE SORTING ANNS

Classification
difficulty

Noise
standard
deviation

Percent of
data used

for training

Classification
accuracy

Easy

0.05 30 % 99.91 %
70 % 99.78 %

0.1 30 % 99.48 %
70 % 99.67 %

0.2 30 % 97.44 %
70 % 99.00 %

Difficult

0.05 30 % 98.66 %
70 % 99.20 %

0.1 30 % 99.19 %
70 % 99.66 %

0.2 30 % 97.56 %
70 % 98.44 %

III. HARDWARE ARCHITECTURES OF THE THREE
FRAMEWORKS

NEO

Input
Signal
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Spike
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Aligned
Spike

× 
× 

‐  ≥   Control

Align

BCT SSI

Fig. 5. Block diagram of the designed NEO-based spike detection and
alignment unit.

A. Spike detector

The spike detection unit is utilized in all three BCI Frame-
works. For assessing the accuracy and feasibility of hardware
architectures, we have implemented both the voltage threshold
and NEO-based spike detection schemes. The implementation
of the voltage threshold scheme is simple, as it only uses
a comparator to determine if the value of the input signal
has crossed a variable threshold value. The block diagram of
the designed NEO-based spike detection and alignment unit
is shown in Fig. 5. The detection unit implements the NEO
Equation (1) and the alignment unit implements the maximum
amplitude spike alignment using fixed-point arithmetic. The
filtered neural signal is passed to a three sample shift register,
which stores samples x[n− 1], x[n], and x[n+1] required in
Equation (1). The NEO output ψ(x[n]) is then computed and
compared to a given Threshold . If the energy of the signal
is greater than or equal to the Threshold , the comparator’s
output is asserted high, which is used as a spike detect signal
monitored by the Control unit in the alignment module. The
alignment module consists of two buffers, the upper one which
is a serial-in, parallel-out (SIPO) shift register to buffer the
neural waveform, and the lower one which is a parallel-in,
parallel-out (PIPO) register of the same size. The Control unit
enables the transfer of data from the SIPO register to the
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PIPO register via the BCT buffer content transfer signal when
the Spike Detect signal is asserted. The Control unit then spans
through the PIPO register in search of the maximum index via
the search span index signal SSI. Once the maximum index is
found, the Control unit performs a part select to output a 64-
sample waveform from the PIPO register via the output port
Aligned Spike.

B. Spike Compression

The block diagram for the autoencoder-based compression
scheme is shown in Fig. 6. An array of M multiply-accumulate
(MAC) units accept the inputs in parallel and multiply each of
the 64-inputs by a weight corresponding to the inputs index
within the spike waveform. To feed the weights to the MACs,
a series of M read-only memories (ROMs) are used.

MAC1

MAC2

MACM

Control 

Unit

Spike 

Detector

ADC Out

Threshold
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+
x

NxWL 

ROM

in

rst

addr

out

Fig. 6. The block diagram of the designed autoencoder-based compression
unit.

The spike detector serially feeds the detected spike to η
different MAC units, where η denotes the desired compression
ratio. One counter is used as an index to four ROMs, each of
which holds one row of the weight matrix. After 64 clock
cycles, the latches in the MAC units each hold one of the
four individual values in the output vector. We implemented
this circuit using 14-bit fixed-point arithmetic. Because the
spike waveform is compressed from 64 samples to 4 samples
(i.e., 16 × compression), and each sample contains 14 bits,
the output of the compression unit is 56 bits. A flag is added
indicating the presence of a spike, which increases the output
of the compression circuit to 57 bits per spike.

C. Spike Sorting

The spike sorting ANN requires the computation of input,
hidden, and output layers, as well as additional output logic
to determine spike’s class based on the values at the output
layer. A generic equation for the computation of each of the
three output values can be given as:

yn = f

([
w11,1 . . . w11,64

]  x1...
x64

+ b11

)
w21,n + b2n,

where x denotes the input vector, W1 and b1 denote the
weights and biases of the hidden layer, respectively, f(·)
denotes the activation function, W2 and b2 denote the weights
and biases of the output layer, respectively, and yn denotes the
result at node n of the output layer. We chose to use a Rectified
Linear Unit (ReLU) activation function, f(x) = max(x, 0), to
reduce circuit complexity while maintaining high classification
accuracy [30].

Fig. 7 shows the processing element (PE) of the ANN-based
sorting circuit to calculate the three values y1, y2, and y3 at the
output layer, which are used to determine the class of spikes.
Over the first 64 clock cycles of processing a spike, the PE
of the spike sorting ANN accepts the 64-length input vector
x and multiplies it by the 1 × 64 weight matrix W using 64
multiplications and 63 additions. Note that the weight matrix
is 1 × 64 since our designed ANN has only one node in the
hidden layer. Since the weight matrix is constant and the spike
vector x is passed one sample at a time to the ANN, the vector
multiplication can be computed using a single MAC iteratively.
On the 65-th clock cycle, the hidden node bias b1 is read from
the ROM and added to w1n× x. The result is then passed
through the ReLU unit and stored in a latch. The value in the
latch is then multiplied by an output layer weight w2n and
added to an output layer bias b2n the following clock cycle.
This is repeated two more times to compute the data at all
output layer nodes. All weights and biases for both the hidden
and output layers are stored in the ROM. Rather than using
a complicated activation function at the output layer, such as
Softmax [18], the output logic in this circuit simply gives the
index of the latch containing the larger value. Not only does
this reduce the complexity of the circuit, it also reduces the
size of the output to only two bits. With an additional bit
indicating a spike, this circuit has a 3-bit output. After 71 clock
cycles, the spike class and a flag signaling the occurrence of
a spike are produced at the output.
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Fig. 7. Processing element of the spike sorting ANN.

For a comparative analysis, we have also implemented tem-
plate matching [31] and OSort-based spike sorting schemes.
Template-matching is a method for the classification of spikes
based on pre-computed, stored templates. Because the tem-
plate waveforms are generated off-chip on pre-recorded neural
signals, complex algorithms can be employed to generate
the ideal templates. The block diagram of the designed and
implemented template matching-based spike sorting unit is
shown in Fig. 8. The pre-computed templates are loaded into
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the design during a programming phase and are stored in shift
registers. The neural signals are represented using a 16-bit
fixed-point representation, with 5 bits allocated for the integer
portion and 11 bits allocated for the fractional part. An array of
EDU units compute the Euclidean distance between the Aligned
Spike and one of the stored templates. The COMP unit then
finds the minimum of the Euclidean distances and compares it
to the Distance Threshold , which denotes the maximum distance
between two spikes to be considered as the same class of spike.
If the minimum distance is less than the Distance Threshold , the
COMP unit generates a 3-bit Spike ID to determine the class of
detected spike. The number of bits used to represent the spike
class is determined by the number of templates.

Stored
Templates

EDU

Aligned
Spike

Spike
ID

COMP

Distance
Threshold

Fig. 8. Block diagram of the template matching-based spike sorting unit.

OSort can be considered as a learning-scheme for template
matching-based spike sorting. In fact, OSort was developed
to aid in the study of neural signals for in-lab experiments
in which each possible spike waveform is saved for analysis
[27]. Doing so, OSort can constantly adapt cluster average
waveforms and can provide an ongoing estimate of the de-
tected waveforms found in the neural signal. Compared to
the static nature of template-matching, in which the templates
may be fixed, OSort can thus adapt to both noise variations
in the environment or electron-drift, which may both distort
the waveform shape. OSort considers every sample of the
spike waveform as a feature in a λ-sample feature space,
where λ denotes the number of samples to represent a spike
waveform. This is an example of a pre-processing method that
is commonly referred to as a supervised learning scheme, in
which the processing of future data relies on the availability
of prior data.

The block diagram of the designed OSort-based spike sort-
ing unit is shown in Fig. 9. The inputs to the clustering unit are
the Aligned Spike and the assignment and clustering thresholds
ThA and ThC, respectively. The samples of the spike waveforms
are represented in 16-bit fixed-point format with 5 bits for the
integer portion and 11 bits for the fractional part. The detected
and aligned spike is compared to the cluster averages Clus. Avg.
using the Distance Unit module, which computes the Euclidean
distance. Similar to the template-matching unit, the COMP unit
finds the minimum distance computed by the Distance Unit and
compares it to the assignment threshold ThA. If the minimum
distance between the aligned spike and one of the cluster
averages is less than or equal to the assignment threshold ThA,
the Control Unit generates a Spike ID and enables the memory
unit Cluster Mem. to write the aligned spike into the matching
cluster. The memory unit Cluster Mem. not only stores clusters
and their assigned spikes, it also has the ability to perform

cluster averaging and merging. The memory unit averages
a cluster when 16 spikes have been assigned to it, which
then updates the average of that particular cluster. When a
cluster average is updated, the memory unit also compares
the distance between the newly updated cluster and the other
cluster averages. The minimum distance between the newly
updated cluster average and a different cluster average is
compared to the clustering threshold ThC. If the distance does
not exceed ThC, the two clusters are merged.

Cluster
Mem.

Distance
Unit

COMP

Spike
IDControl

Unit
Mem. Control

Aligned 
Spike

ThC

ThA

Clus. Avg.

Fig. 9. Block diagram of the designed OSort module.

IV. SIMULATION AND ASIC IMPLEMENTATION RESULTS
OF THE BCI FRAMEWORKS

For the evaluation of the designed BCI Frameworks, we
use the publicly available Wave Clus Database [29]. Within
the database, datasets differ based on the ease of spike
classification (Easy and Difficult) and noise. The database
includes 20 different simulated neural waveforms, each of
which contain three different classes of neural spikes. The
simulated waveforms were created by randomly selecting
spikes from a database of 594 spike shapes from neural
recordings, then placed with random amplitudes and times
in each waveform to resemble spikes from other neurons.
Then, a preselected spike train with predefined types of spikes
was imposed on the random signal. Noise with a standard
deviation between 0.05 and 0.4 relative to the magnitude of
the spikes is added to the simulated waveform. The data is
first simulated at 96 KHz, then down sampled to 24 KHz.
Spikes detected in the Wave Clus dataset were divided into
30% used for training and 70% used for testing. We trained
our designed autoencoder on the Wave Clus dataset with
Easy classification and 0.05 noise which had a -30.5019
signal-to-noise-ratio. The signal to noise ratio is defined as
10 log10(VRMS/σn), where VRMS denotes the RMS voltage of
the signal and σn denotes the noise variance. The autoencoder
was trained over 1,317 epochs. The network was then tested
on the remaining 70% of the spikes. The reconstructed spike
waveforms have an average signal-to-noise-and-distortion ratio
(SNDR) of 19 dB, a standard deviation of 2.71 dB, and a
worst case reconstruction of 7.13 dB. The SNDR is defined
as 20 log10(norm(x)/norm(x − x̂)), where norm(.) denotes
the L2 norm, x denotes the original data, and x̂ denotes the
reconstructed data [32].

We implemented our designed circuits for detection, com-
pression, and sorting using Synopsis DC Compiler in a stan-
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TABLE III
THE ASIC CHARACTERISTICS AND IMPLEMENTATION RESULTS OF DIFFERENT BRAIN-COMPUTER INTERFACING SYSTEMS.

Tech. Core Operating Area per Power per Sorting Data Transmission Total
Work Algorithm (nm) voltage frequency channel channel Accuracy rate power per power per

(V) (kHz) (µm2) (µW) (%) reduction channel (µW) channel (µW)
[33] Feature 90 0.55 4000 60 2 77 11× 49 51

Extraction
[34] OSort 65 0.27 480 70 4.68 75 240× 2 6.68
[35] Feature 45 1.1 960 2700 20 84.5 240× 3 23

Extraction
[36] Feature 130 1.2 160 23 0.75 – – – –

Extraction
[37] BOTM 40 1.1 500 17.5 19 93 – – –
[38] Feature 65 0.54 3200 3 0.175 86 257× 2 2.175

Extraction
Ours [31] Template 45 0.25 24 300 0.064 90 3200× 0.36 0.42

Matching
Ours OSort 32 1.16 24 2570 2.78 87 1600× 0.72 3.5
Ours Spike

32 0.7 20

3 0.58 – 6.24× 145.5 146.08
Detection

Ours [39] Autoencoder 13 1.84 – 98.24× 8.55 10.39
Compression

Ours Spike 9.2 1.04 98 1866× 0.45 1.49
Sorting ANN

dard 32-nm CMOS process with a global operating voltage
of 0.7 V. Because neural recording devices often sample at
20 KHz, 20 KHz and 1.28 MHz are sufficient frequencies to
process data from one and 64 channels, respectively. Table
II gives the characteristics and ASIC implementation results
of the designed circuits. Power consumption was reported
by Synopsis DC Compiler using a Non-Linear Delay Model
[40]. Cadence Encounter was used to place and route the
synthesized netlist of the designed circuits. Fig. 10 shows
the chip layouts of the compression circuit and sorting circuit
including the detector. The autoencoder compression and the
spike sorting ANN circuits occupy 13 µm2, and 9.2 µm2 of
silicon area, respectively. Note that there is a 5µm buffer
surrounding the chip layouts, which are not included in the
area specifications given in Table II.

TABLE II
ASIC IMPLEMENTATION RESULTS OF THE THREE DESIGNED BCI

FRAMEWORKS

Framework Frequency Power (µW) Area (µm2)
Spike Detection

20 (kHz)

0.58 3
Autoencoder 1.84 13
Compression
Spike Sorting ANN 1.04 9.2
Spike Detection

1.28 (MHz)

1.93 3
Autoencoder 3.87 13
Compression
Spike Sorting ANN 2.82 9.2

Table III gives the ASIC characteristics and implementation
results of various state-of-the-art BCI systems. For a fair
comparison, we have listed the ASIC results for single-channel
operation. The work in [33] implements NEO-based spike
detection, aligns detected spikes to maximum derivative, and
implements feature extraction utilizing the discrete derivatives
algorithm. The design supports up to 64 channels via four
16-channel modules. The design in [34] uses the absolute
value spike detection scheme and implements OSort clustering
for 16 channels. The circuit in [35] performs single-channel
sorting with NEO-based spike detection and discrete derivative

.1
1
4
 µ

m
.

.118 µm.

compression
module

detector

(a)

.9
3
.5

 µ
m

.

.98.6 µm.

classifier

(b)

Fig. 10. Chip layouts of the (a) compression circuit for M = 4 and (b)
ANN sorting circuit.

feature extraction. It supports an unsupervised learning phase,
similar to OSort-based implementations. The design presented
in [36] is a multi-channel spike sorting ASIC based on feature
extraction. The design utilizes decision trees for sorting in
place of memory units. The work in [37] implements Bayes
optimal template matching (BOTM) with support for unsuper-
vised learning. The multi-channel spike sorting ASIC in [38]
implements integer coefficient feature extraction and cluster-
ing. For a comparative analysis of data rate reductions, area
utilizations, and power consumptions, we have implemented
both the template-matching sorting in [31] and OSort-based
clustering ASICs. Both of the designed ASICs utilize NEO-
based spike detection and maximum amplitude alignment.

The latency of on-chip processing is also an important
consideration. It is shown that different synaptic modifications
can be produced by applying stimulation within 20 ms before
or after pre-synaptic activation [41]. For classification/sorting
of neural spikes, the processing latency can be defined as the
number of clock cycles required after a spike is detected. The
autoencoder compression takes 64 clock cycles to compress
the spike waveform, not counting the off-chip processing
latency. The spike sorting ANN, the template matching-based
sorting scheme,and the OSort-based clustering implementa-
tions have processing latencies of 71, 64, and 32 clock cycles,
respectively. While these systems would be operated at speeds
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higher than the sampling rates, their latencies are well within
the acceptable delay even if running at the sampling rate (20
– 24 kHz). The autoencoder compression latency correlates to
2.7 ms, while the spike sorting ANN, template matching-based
implementation, and the OSort-based clustering units have
processing latencies of 3 ms, 2.7 ms, and 1.3 ms, respectively.
Unfortunately, the processing latency of the designs in [33]–
[37] was not reported. The authors of [38] have reported the
clock latency of the feature extraction and dimensionality re-
duction process, but they have not accounted for the clustering
latency.

The accuracy of the spike sorting/classification implemen-
tations, defined as the percentage of correctly sorted spikes
against those existing in the ground truth dataset [29], are
reported in Table III. Note that our template matching-based
ASIC [31], as well as the work in [35], [37], [38], utilize the
same synthetic ground-truth dataset given in [29]. The work in
[33] uses both real neural data and synthetic data to quantify
the accuracy of their system, however, the synthetic data set is
not the same as that used in [29]. The work in [34] and [36]
both use only real data. The accuracy of the spike detection
and autoencoder-based compression frameworks are not listed
in Table III as these schemes do not perform on-chip spike
waveform classification. Compared to the other state-of-the-art
designs listed in Table III, it can be seen that our spike sorting
ANN is among the most area- and power-efficient designs.
From the results given in Table III we can conclude that
for in-vivo area- and power-constrained processing of neural
signals, it is preferred to implement the on-chip spike sorting
ANN over other realizations. This is in part because the power
consumption of the on-chip neural signal processing itself is
relatively small compared to that of wireless transmission [42].
The transmission power consumption rates are estimated by
multiplying the output data rates by a transmission power
rate of 3 nJ per bit [43]. For a fair comparison, all of the
metrics listed in Table III are for single-channel transmission.
It follows then that a higher reduction in output data rate leads
to a reduction of overall power consumption. By reducing the
required output data rate, the total power dissipation of the
BCI system can be decreased significantly, meeting tissue-safe
thermal power constraints of brain-implantable devices [44].

V. CONCLUSION

This article presented the design and implementation of
three brain-computer interface (BCI) frameworks. While each
presented framework can reduce the data rate compared to
raw neural signal sampling, the conclusion is made that the
ideal framework for decreasing overall power consumption, in-
cluding wireless transmission power, is the one that efficiently
implements spike sorting using an artificial neural network on
a brain-implantable chip. The ASIC implementation results of
each framework were compared to state-of-the-art BCI sys-
tems. We have discussed the feasibility of our designed ASICs
and confirmed that the power consumption rates are within
the tissue-safe requirements for in-vivo processing of neural
signals. It was shown that the overall power consumption is
dominated by the output data rate of the system, and therefore

the reduction in data rate is among the most important metrics
in terms of overall power consumption reduction for in-vivo
processing.
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