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Abstract: Designers have to carefully choose the best-suited fast Fourier transform (FFT) algorithm among various available
techniques for the custom implementation that meets their design requirements, such as throughput, latency, and area. This article,
to the best of our knowledge, is the first to present a compact and yet high-throughput parameterizable hardware architecture for
implementing different discrete FFT algorithms, including radix-2, radix-4, radix-8, mixed-radix, and split-radix algorithms. These
algorithms are especially suitable candidates for compact hardware realizations due to their regular structures and symmetries
properties in their signal flow graphs. The designed architectures are fully-parameterizable to support a variety of transform lengths
(powers of 2, 4, 8) and variable word-lengths. The FFT algorithms have been modeled and simulated in double-precision floating-
point and fixed-point representations using our custom-developed library of numerical operations. The designed synthesizable FFT
architectures are modeled in Verilog hardware description language and their cycle-accurate and bit-true simulation results are
verified against their fixed-point simulation models. The characteristics and implementation results of various FFT architectures on
a Xilinx Virtex-7 FPGA. Compared to recently published works, our memory-based FFT architectures utilize less reconfigurable
resources while maintaining comparable or higher operating frequencies. The ASIC implementation results in a standard 45-nm
CMOS technology are also presented for the designed memory-based FFT architectures. The execution times of FFTs on a
workstation and a graphics processing unit are compared against our FPGA implementations.

1 Introduction

Designers have to carefully choose the best-suited fast Fourier trans-
form (FFT) algorithms among numerous available techniques for
custom implementations that meet their design requirements, such
as throughput, latency, and area. The FFT algorithm, presented by
James Cooley and John Tukey [1], is a simple yet very efficient alter-
native to computing the discrete Fourier transform (DFT) directly.
The Cooley-Tukey FFT was effectively able to reduce the computa-
tional complexity of the DFT from N2 to only N log(N), where N
denotes the transform length. The Cooley-Tukey algorithm is quite
versatile and can be combined in many different ways to compute
the DFT for any transform length. These radix-based FFTs are used
in a wide variety of digital signal processing applications, in partic-
ular the radix-2 and radix-4 algorithms. Cooley-Tukey generalized
the FFT, with support for any radix-r. In this way, one could mix
radices, as is done in the mixed-radix algorithm, and use the Cooley-
Tukey FFT on transforms whose lengths are not powers of r. There
have been other variants on the Cooley-Tukey algorithm, such as the
split-radix FFT by Duhamel and Hollmann [2], which combines the
benefits of both radix-2 and radix-4 FFTs. The split-radix FFT can
also be extended to support different combinations of radices.

Various hardware architectures have been proposed for imple-
menting FFT algorithms [3] [4] [5] [6] [7] [8] [9] [10] [11]. However,
many of the previously published designs are either large and
high-throughput or relatively small, but rather low-throughput. In
applications where silicon area is an important concern, such as neu-
ral signal processing, a low-throughput FFT may not meet the target
throughput. Additionally, while some recent designs have focused
on FFT optimizations, such as twiddle factor generation [12] or
memory address generation [13], they fail to produce small, yet
high-throughput designs. To the best of our knowledge, this is the
first work presenting a compact and yet high-throughput parame-
terizable hardware architecture for implementing different discrete
FFT algorithms, including radix-2, radix-4, radix-8, mixed-radix,
and split-radix algorithms. The rest of this article is organized as

follows. The reconfigurable architecture of radix-2, radix-4, radix-8,
mixed-radix, and split-radix FFT algorithms are presented in Sec-
tions 2 to 6, respectively. The characteristics and implementation
results of each architecture on a Xilinx Virtex-7 field-programmable
gate array (FPGA) are presented. The bit-true and cycle-accurate
simulation results of hardware implementation of FFT algorithms
are compared against their fixed-point simulation results. The ASIC
implementation results of radix-2, radix-4, radix-8, mixed-radix, and
split-radix FFTs in a standard 45-nm CMOS technology are pre-
sented. Comparison remarks are made in Section 7. Finally, Section
8 makes some concluding remarks.

2 Radix-2 FFT

In general, a radix-m algorithm performs computations that involve
m inputs and produces m outputs at a time. This is the source of
potential performance increase when several elements are calculated
simultaneously, compared to one at a time with the discrete Fourier
transform algorithm. With m inputs, m equations for each of the
outputs are required. These equations can be derived by solving for
z1, z2, . . . , zm as follows:
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Table 1 Cooley-Tukey radix-r characteristic parameters for transforms of length N .

Parameter Description Equation

STGS Number of stages logr N

BS Number of butterfly sets in current stage rs−1

k Increment value of k in Eq. (2) rs−1

OFF Spacing between inputs to the butterflies N/rs

BPS Butterflies per set N/rs

IND Starting index of each set (SetCounter − 1)( N

rs−1 )

where W k
m, known as the twiddle factor and is defined as:

W k
m = e

−2πik
m , (2)

where k is a value that begins at zero and is incremented by a step
defined by the current stage of the algorithm, and a, b, c, . . . , are the
m inputs to the butterfly. The butterfly structure is the fundamental
component of the Cooley-Tukey algorithms. The Cooley-Tukey sig-
nal flow graphs (SFGs) of an N -point radix-r FFT have regular and
symmetric structures and hence, they can be described by the char-
acteristic parameters listed in Table 1. The characteristic equations
in Table 1 can be verified by examining the SFG shown in Fig. 1.
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Fig. 1: 16-point radix-2 signal flow graph.

Fig. 2(a) shows the hardware architecture of the radix-2 butter-
fly. It accepts six inputs, i.e., the real and imaginary parts of a, b,
and W k

N . The dotted lines show the cutset lines where the pipeline
registers will be added at the crossing points with the datapath sig-
nals. The pipelining technique is used for minimizing the critical
path delay of FFT SFGs by inserting registers between combina-
tional data paths while maintaining the input/output characteristics
of the design [14]. A cutset intersects a set of edges of an SFG such
that if these edges are removed from the graph, the graph becomes
disjoint. In cutset pipelining, a register is added at the intersection of
a cutset line with an edge in the SFG.

While one could instantiate the butterfly module to directly imple-
ment a radix-2 DIF SFG, this approach becomes infeasible for a
relatively large transform length. For a compact implementation,
butterfly units are time-multiplexed in the radix-2 FFT datapath, as
shown in Fig. 2(b). While only two of these butterfly units are instan-
tiated, however, one could use any 2n number of butterfly units, up
to half the number of data points. The datapath in Fig. 2(b) consists
of a main memory unit, two processing elements (butterfly units),
and registers and multiplexers. The memory unit of the datapath is
parameterizable for variable depths and widths (i.e., various trans-
form lengths and wordlengths). All other components in the datapath
are also parameterizable to adjust the wordlength to the desired pre-
cision. The select lines of the multiplexers, enable inputs of the data
memory and registers, and the read/write ports of the data memory
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Fig. 2: (a) The datapath of the pipelined radix-2 butterfly, (b) the
FFT architecture using time-multiplexed butterfly units, (c) the high-
level block diagram of the radix-2 FFT module, and (d) cascaded
radix-2 modules for implementing an N -point FFT.

are all driven by the control unit. This enables utilizing the same dat-
apath and allows the control unit to change the behavior based on
the current stage. Additionally, this general structure can easily be
modified when using a different radix FFT.

The high-level block diagram of the radix-2 FFT module is shown
in Fig. 2(c). To avoid using more processing elements, the twiddle
factors are precomputed and stored in a read-only memory (ROM).
The twiddle factors are represented using 16 bits, with 14 bits
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reserved for the fractional part to provide a maximum absolute error
of about 8.5× 10−5. Thus, for a 1024-point radix-2 FFT, the ROM
size is 8.192 Kb. The control unit finite state machine (FSM) which
drives the hardware has the following parameters: NUM_POINTS
indicates the number of data points; NUM_STAGE indicates the
number of the current stage of the FFT; ADDRWIDTH indicates the
minimum number of bits required for the address of the memory
unit; and ROMADDRWIDTH indicates the minimum number of bits
required for the read address of the twiddle factor ROM. The param-
eter NUM_STAGE allows a local parameter to compute the BS of the
current stage, as well as computing the OFF and BPS.

The control unit for the radix-2 FFT architecture is shown in Fig.
3. The FSM which drives the control unit begins and remains in
state Read Inputs/Idle until an input signal Start is asserted high.
Once the signal Start has been asserted, the memory unit is enabled
for writing, and the write address of the memory is set to an inter-
nal counter, that counts from 0 to N − 1. After this internal counter
has counted N inputs, the module can begin performing the current
stage of the FFT. Also, to be able to store the butterfly data back into
the memory, the select line of the multiplexer Source Select is set
such that the data will feed back into the memory and will no longer
be coming from the input port. The FSM keeps track of how many
sets have been performed in the state Check Set Counter , and keeps
track of how many butterfly computations have been performed in
the state Check Butterfly Counter . If an internal variable setCounter
has counted to the number of sets defined earlier, then the current
stage of the FFT has been completed. If an internal Butterfly counter
has counted to the number of butterfly computations within the cur-
rent set, then the setCounter is incremented and checked. To perform
a butterfly computation, two inputs are passed to the butterfly in the
state Read Mem. To read and write data properly, the FSM sets the
select lines Register Destination and ROM Destination accordingly.
The state Enable Regs enables registers to store the values being
read from the memories, as they will later propagate through the
butterfly units. Once all of the values are in their registers, the state
advances to Collect Butterfly Output , where registers at the output of
the butterfly units are enabled to store the result. These values are
then written one at a time (i.e., real and imaginary) back into the
memory in the state Write Mem, where the multiplexer select line
Out Destination is set to read the correct pair of real and imaginary
data. After the state Write Mem, the Butterfly Counter is incremented
and the FSM returns to the state Check Butterfly Counter . Once all
computations have been performed, the memory is enabled for read-
ing and the memory contents are passed to the output in the state
Send Output . In the state Send Output , an output signal FFT Ready
goes high to indicate to the next stage or module that data will begin
to stream from the output ports. Additionally, when the FFT is being
processed, there is an output signal Busy to indicate that the module
is currently processing data. When the output signal Busy is low in
the state Read Inputs/Idle, this informs a wrapper that the next set of
data inputs can be received.

There is a special exception made for the final stage of the radix-
2 FFT, as there are no longer twiddle factor multiplications. Thus,
the ROMs, the demultiplexers, and the output registers are removed
from the high-level module and from the basic datapath. The but-
terfly unit itself is also now smaller, as the multipliers are no longer
required. Omitting complex multipliers simplifies the butterfly unit
to just 4 adders/subtractors. The FSM is also adjusted to remove the
unnecessary output signals to enable the ROM and to set the read
address. Also, to receive the outputs in the correct order, the read
address is bit-reversed. To do so, a module is placed in between the
control unit’s output Memory Read Address and the datapath’s input
Memory Read Address. Once the signal FFT Ready is high, the
module will reverse the bits and send the memory contents to the
output ports in the correct order.

After connecting the control unit to the datapath, these modules
are instantiated and cascaded as shown in Fig. 2(d), with each of the
modules computing a single stage. However, the control unit takes
one clock cycle to accept the first input as it awaits the start signal
to be asserted high. To account for this one clock delay, registers are
placed between the outputs and inputs of each stage. Also, some rest
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Fig. 3: Control unit of the radix-2 FFT.

time is alloted for the second stage to read its values before the first
stage receives its next set of inputs. Thus, the output signal Busy
is connected to an FSM called the Ready Controller , which simply
waits for the negative edge of the signal Busy and asserts its own
Busy output NUM_POINTS number of clock cycles later. When the
Ready Controller’s output Busy goes low, the first stage module is
once-again ready to receive a new FFT. The benefit of cascading
multiple radix-r modules is that there is no need for a conflict-free
memory access scheme and its associated address generators [15],
as the memory elements are local to their particular stage mod-
ule. This also allows processing up to logrN FFTs at a time with
pipelining. Additionally, compared to the traditional single-delay
commutator (SDC) or single-delay feedback (SDF) schemes, this
hybrid memory-based approach is readily scalable when modifying
the transform length, especially with regards to the delay registers
used in the SDC and SDF growing by powers of 2 in every stage.
However, is a more complex control unit for routing of data.

To choose an acceptable representation and sufficient number of
bits for signals, we measure the mean square error (MSE) of the
fixed-point output values against the floating-point results. Figure 4
shows the MSE of the output values for the designed FFT algorithms
for wordlengths ranging from 10 bits to 22 bits.
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Fig. 4: Mean-squared error of FFT algorithms for various
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Table 2 gives the characteristic and implementation results of the
1024-point radix-2 FFT on a Xilinx Virtex-7 xc7vx690tffg1157-2
FPGA for a variety of wordlengths, where (WL, WF) denotes the
wordlength WL and the number of bits reserved for the fractional
part WF. The latency of the 1024-point radix-2 FFT is 56870 clock
cycles for the first set of FFT outputs. Due to serial processing of
data, 20480 clock cycles are used for input/output (I/O) buffering,
and 36390 clock cycles are used for processing. If there are multiple
data sets being processed due to the pipelined design, it will take
6663 clock cycles for each subsequent set of FFT outputs.

Table 2 Characteristics and implementation results of 1024-point radix-2 FFT
for different wordlengths.

(WL,WF) Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

(16, 11) 5786 (0.67) 5800 (1.34) 72 (2.0) 317
(20, 10) 6794 (0.78) 6548 (1.51) 72 (2.0) 302

3 Radix-4 FFT

Based on the radix-2 algorithm, the radix-4 algorithm performs the
computation of two radix-2 butterflies, although a bit differently. The
radix-4 butterfly accepts four inputs and produces four outputs. An
important difference of the radix-4 algorithm is that the number of
points N must be an integer power of 4. However, similar rules apply
when defining generalized parameters that govern the SFG behavior
as given in Table 1 for r = 4.

The hardware implementation of the butterfly unit is trivial, as
the multiplication by an imaginary simply causes the real and imagi-
nary parts to swap and switch signs. While only a single complex
multiplication is required in the radix-2 butterfly datapaths, three
complex multiplications are required in the radix-4 butterfly unit.
Thus, a pipelined complex multiplier was implemented, as shown
in Fig. 5 (a). An alternative datapath for the complex multiplication
using 3 multipliers is shown in Fig. 5 (b). However, this complex
multiplier is not utilized as it would add extra latency to our design
if the critical path is maintained to that of a single multiplier. Fig. 6
shows the architecture of the pipelined radix-4 butterfly using cut-set
registers. Note the three complex multipliers are shown by the X∗

symbol. The rightmost cutset shown in Fig. 6 is added to account for
the internal one clock latency of the pipelined complex multiplier.
Once all inputs are ready, the butterfly has a latency of four clock
cycles.

The datapath for the radix-4 algorithm uses the same general
structure of the radix-2 FFT shown in Fig. 2(b); the main changes
consist of radix-4 butterfly units and more registers at the input and
output of the butterfly units. Also larger multiplexers are required to
direct the data into the corresponding registers. There is an excep-
tion made for the final stage as the multiplications by twiddle factors
are no longer required, and hence the ROM and additional logic
elements required to support it are removed from the final stage.
The datapath is driven by the control unit, which also has a similar
diagram as the one shown in Fig. 3. The main difference, how-
ever, is that the control signals adhere to the radix-4 SFG equations
described at the beginning of this section. With the control unit con-
nected to the datapath, stage modules are cascaded, essentially the
same as was done for the radix-2 FFT. However, in the final stage,
a Digit Reversal module is inserted between the control unit’s read
address output and the datapath’s read address input to produce the
outputs in the correct order.

Table 3 gives the characteristic and implementation results of a
1024-point radix-4 FFT on the same Xilinx Virtex-7 FPGA. The key
advantage of the radix-4 FFT is for N points it takes significantly
fewer clock cycles compared to the radix-2 FFT. For N = 1024,
our radix-4 implementation has a latency of 29118 clock cycles.
Due to serial processing of data, 10240 clock cycles are used for
I/O buffering, and 18278 clock cycles are used for processing. If
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Fig. 5: (a) The datapath of the pipelined complex multiplier using
4 multipliers and 2 adders and (b) the datapath of the pipelined
complex multiplier using 3 multipliers and 5 adders.
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Fig. 6: Datapath of the pipelined radix-4 butterfly.

there are multiple data sets to process, each additional FFT will take
6918 clock cycles to complete. Even though there are fewer stages,(
log4 N vs. log2 N

)
, each butterfly computation has to perform

three non-trivial multiplications, which results in a slightly larger
design and also the error may be slightly larger than the error using
radix-2 FFT.

4 Radix-8 FFT

Unlike the equations of radices 2 and 4, radix-8 uses nontrivial
multiplications, in addition to the twiddle factor multiplications.
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Table 3 Characteristics and implementation results of 1024-point radix-4 FFT
for various wordlengths.

(WL,WF) Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

(16, 11) 9517 (1.10) 7247 (1.67) 96 (2.6) 317
(20, 10) 11205 (1.29) 8640 (1.99) 96 (2.6) 302

There are different ways to approach this challenge from the hard-
ware perspective. The simplest solution would be to include these
extra multipliers within the butterfly unit itself. However, this would
require 16 complex multipliers, in addition to the 7 already needed
for multiplications with W k through W 7k. We propose to create
a coefficient-multiplier unit that consists of four pipelined com-
plex multipliers, which would be time-multiplexed. The datapath
and control units also account for the added latency. Because the
coefficient-multiplier unit has already computed the products, they
are simply treated as inputs to the butterfly. The coefficients them-
selves, which do not change regardless of the transform length, are
obtained by solving Eq. (1) for m = 8 and are stored in internal
registers.

The parameters for describing the behavior of the radix-8 FFT
are essentially equal to those for radix-2 and radix-4 in Sections 2
and 3, respectively, but for r = 8 for Table 1. More multipliers are
required in radix-8 FFT and for a compact implementation, a sin-
gle butterfly unit is time-multiplexed. Using a single butterfly also
means that only a single coefficient multiplier is required. Not only
does this reduce the number of adders and multipliers utilized, the
total number of registers is also decreased, as well as the size of
the multiplexers, from 16-to-1 to 8-to-1. The radix-8 FFT architec-
ture is similar to the ones for the radix-2 and radix-4 FFTs, shown
in Fig. 2(c). A major change, aside from the singular butterfly unit,
is the additional de-multiplexers and registers at the output of the
coefficient multiplier. This is why only a single butterfly unit is uti-
lized, as the design would be substantially larger otherwise with only
marginal decreases in processing time. The final stage also includes
the digit reversal module. These modules are cascaded in a similar
fashion as was done for the radix-2 FFT shown in Fig. 2(d).

Table 4 gives the characteristic and implementation results for a
4096-point radix-8 FFT (1024 is not an integer power of 8) on the
same Xilinx Virtex-7 FPGA. The latency is 131234 clock cycles
for the first FFT output. Due to serial processing of data, 32768
clock cycles are used for input/output I/O buffering, and 98466
clock cycles are used for processing. If there are multiple data sets
being processed, the latency is 36870 clock cycles for each subse-
quent FFT output. This latency is for a transform consisting of 4
times as many points as those in Tables 2 and 3 and is a result of
a trade-off between having a more compact design and a larger and
higher-throughput design. One could add a second butterfly unit for
reducing the latency, at the cost of a larger design.

Table 4 Characteristics and implementation results of 4096-point radix-8 FFT
for various wordlengths.

(WL,WF) Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

(16, 11) 16033 (1.85) 14100 (3.25) 100 (2.7) 317
(20, 10) 19816 (2.29) 17609 (4.06) 100 (2.7) 302

5 Mixed-Radix FFT

One restriction of the radix-4 and radix-8 algorithms is that they
cannot be used for all powers of two, as they require lengths that
are integer powers of four and eight, respectively. One solution is to
mix the radices; that is, using different radix algorithms in different
stages of the FFT. One decides which radix to use in a particular
stage by factorizing N . One can choose to factor N into prime

numbers, but our approach is to reuse our verified radix-2, 4, and
8 modules. For example, one may use only a radix-2 FFT for a 32
point transform or factor 32 as 4× 8 and perform a 32-point FFT in
only two stages: the first stage is processed using a radix-4 FFT and
the second stage is processed using a radix-8 FFT. Note that the pre-
viously discussed FFTs were all implemented using a single radix,
such as radix-2, radix-4, and radix-8, which allows us to use the gen-
eralized equations given in Table 1. However, because mixed-radix
FFTs utilize stages of different radices, two important variables, BS,
which denotes the number of butterfly sets per stage, and BPS, which
denotes the number of butterflies per butterfly set, must use updated
equations. Wang et. al. [16] presented the following formulas to
compute the values for BS and BPS:

BS =

∏i
m=0 Rm

Ri
(0 ≤ i ≤ s− 1),

BPS =

∏s−1
m=iRm

Ri
(0 ≤ i ≤ s− 1),

where R is an array containing the factors, Rm and Ri are the m-th
and i-th elements of that array, respectively, and s is the the number
of elements in R. The number of elements in R is also equivalent to
the number of stages. In the 32-point example, R consists of [4, 8]
and listed are the following Sets and BPS values per stage:

Stage Sets BPS

1 (Radix-4) 1 8

2 (Radix-8) 4 1

The previously defined OFF remains equal to BPS, while the
increment of the twiddle factors is defined as:

N

r ×BPS
,

where r is the number of the current radix.
To implement the mixed-radix FFT architecture, the radix-2,

radix-4, and radix-8 FFT architectures are utilized and cascaded, as
shown in Fig. 2(d) but each stage of the mixed-radix FFT is per-
formed using a different radix-r stage module. The order of radices
in the mixed-radix algorithms is not chosen arbitrarily. A 1024-point
FFT can be implemented with a number of different radix combina-
tions. For example, one can choose

(
8× 8× 4× 2× 2

)
,
(
2× 8×

4× 2× 8
)
, or

(
4× 4× 8× 8

)
. For our 1024-point FFT, we chose

the order of
(
2× 4× 4× 4× 8

)
. Firstly, because the radix-2 and

radix-4 FFT modules are time-multiplexing two butterfly units each,
they do not have to wait for the higher latency radix-8 FFT to finish.
Additionally, we use the radix-8 FFT in the final stage to avoid the
extra multipliers, as the final stage of the mixed-radix algorithm does
not involve multiplications with twiddle factors. The lack of multi-
pliers also decreases the clock latency of the radix-8 butterfly unit, as
the clock delay of the complex multiplications is no longer present.

Table 5 gives the characteristic and implementation results of a
1024-point mixed-radix FFT on the same Xilinx Virtex-7 FPGA.
Our implementation has a latency of 31594 clock cycles for the first
FFT output. Due to serial processing of data, 10240 clock cycles are
used for I/O buffering, and 21354 clock cycles are used for process-
ing. If there are multiple data sets being processed, there is a latency
of 8200 clock cycles for each subsequent set of FFT outputs.

Table 5 Characteristics and implementation results of 1024-point mixed-radix
FFT for various wordlengths.

(WL,WF) Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

(16, 11) 10126 (1.17) 8050 (1.86) 84 (2.3) 317
(20, 10) 11262 (1.30) 8986 (2.07) 84 (2.3) 302
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6 Split-Radix FFT

The split-radix FFT algorithm presents an efficient way to combine
the benefits of the radix-2 and radix-4 FFT algorithms. The butterfly
for the split-radix algorithm, as shown in Fig. 7, is similar to the
radix-4 butterfly, but it is different in how its equations are defined:

z1 = a+ c,

z2 = b+ d,

z3 =
(
(a− c)− j(b− d)

)
W k
N ,

z4 =
(
(a− c) + j(b− d)

)
W 3k
N .

Note that the bottom half of the butterfly processes one more “step”
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Fig. 7: Original and simplified split-radix butterfly.

than the top half, thus giving the split-radix SFG it’s signature ‘L’
shape. Due to it’s asymmetry, it is challenging to develop general-
ized equations to describe important parameters, such as the number
of Sets and the starting index of each particular set. The other equa-
tions still apply, such as the number of stages defined as log2 N ; OFF
and BPS are given by N/2s+1, where s denotes the number of the
current stage, which ranges from 0 to log2 N ; and the twiddle factor
increment which is 2s−1. Note that the number of sets in each stage
is defined by the Jacobsthal integer sequence, with the presumption
that the first stage always consists of a single set. This forms the
beginning of a binary tree as 1, [0,1], [1,1,0,1], [0,1,0,1,1,1,0,1], etc.
Each 1 represents a set of butterflies; additionally, each 1 will gener-
ate another 1 but also a 0, which indicates how half of the sets in the
next stage are skipped due to the extra processing of the bottom half
of the butterfy. Each 0, however, will generate two 1s. Thus, the gen-

�

��

����

��������

erating formula of the Jacobsthal integer sequence given by Sloane
[17] is used to compute the number of sets:

NumSets =
2s − (−1)s

3
,

where s is the number of the current stage, from 1 to log2 N .
With the number of sets computed, the starting indeces for each

set of butterflies are precomputed and stored. First assume that we
already have the binary Jacobsthal sequence of any given stage, in
this case stage 3, of an N point split-radix FFT as M = [1011]. We
then iterate through the M array. If the current element is a 1, this
means that there is a set and it will have an index given by:

index = (n− 1)× (
N

2s−1
),

where n is the indexing variable. The calculated index is added to
an array that will contain the indeces for that particular stage. As

it is not a trivial method to compute the indeces, they are simply
precomputed and stored in a block memory.

The control unit and datapath are similar to that of the radix-8,
with the main difference being that the indeces are now stored in
a separate memory. Additionally, there is no need for a coefficient
multiplier, as the multiplications by j are trivial. With the control
unit and datapath connected, we simply cascade as many modules
as necessary to compute the desired N -point FFT. As opposed to
mixed-radix FFT, the outputs of the split-radix FFT will be in bit-
reversed order and hence, a bit-reversal module is inserted between
the control unit and datapath in the final stage to produce in-order
outputs.

Table 6 gives the characteristic and implementation results of our
1024-point split-radix FFT on the same Xilinx Virtex-7 FPGA. Our
design has a latency of 54662 clock cycles for the first output. Due
to serial processing of data, 20480 clock cycles are used for I/O
buffering, and 34182 clock cycles are used for processing. If there
are multiple data sets being processed, each subsequent FFT output
will have a latency of 8198 clock cycles. This latency could be fur-
ther lowered by multiplexing more butterfly units. This would come
at the cost of a more complex control unit, larger multiplexers, and
more registers. The only possible overhead is that the number of sets
does not follow a regular order, and one or more of the extra butterfly
units might remain unused in certain stages.

Table 6 Characteristics and implementation results of 1024-point split-radix
FFT for various wordlengths.

(WL,WF) Regs. (%) LUTs. (%) DSP48s. (%) Freq. (MHz)

(16, 11) 6184 (0.71) 6392 (1.48) 64 (1.7) 317
(20, 10) 7192 (0.83) 7397 (1.71) 64 (1.7) 302

7 Comparisons and suggestions

Table 7 gives the characteristics and implementation results of our
FFT architectures and several relevant published work. The radix-2
FFT developed in [3] has directly implemented the SFG for 16 and
32 points. As a result, a large number of butterfly units is required
and hence, a relatively larger number of on-chip DSP48s is used.
Our radix-2 realizations use fewer DSP48s, due to time-multiplexed
butterfly units rather than using multiple instances. However, due to
pipelining of the FFT stages, slightly more registers are required.
The authors of [4] present a 64-point Radix-22 FFT processor. For a
fair comparison, we have implemented the same transform length
FFT on the same Virtex-7 FPGA. Unfortunately, the authors do
not mention their input and output wordlengths, nor their output
throughput. However, their emphasis is for high-speed applications.
We can see that our memory-based approach utilizes fewer recon-
figurable resources while maintaining a higher operating frequency.
The design in [5] presents a 64-point radix-4 FFT processor in which
a butterfly unit is time-multiplexed. We also compare our designs
with Xilinx’s commercial FFT IP core [6]. As Xilinx offers several
implementations, we have chosen the FFT IP core in Radix-2 Burst
I/O mode, which also uses a memory-based, iterative approach.
While the design is smaller than our cascaded architecture, the
computational latency is longer, with 7311 clock cycles. The mixed-
radix FFT presented in [7] uses radix-25, radix-16, and radix-9
FFTs implemented using Winograd Fourier transform (WFT) algo-
rithms for 2-, 3-, 4-, and 5-point DFTs. Unfortunately, they do not
directly report the number of utilized registers, DSP48s, and signals’
wordlengths in their manuscript. Uzun et al [8] have also presented
memory-based designs for radix-2, radix-4, and split-radix FFTs.
Their designs are built upon a common framework to ours, such
that a butterfly unit is time-multiplexed and the FFT is computed
in an iterative fashion. They have listed their device utilization for
radix-2 and radix-4 in terms of the number of slice’s utilized. Thus,
we have estimated their register and look-up table (LUT) utilization
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Table 7 Characteristics and the implementation results of various FFT realizations on different FPGAs.

Work Algorithm Device N WL Regs. LUTs. DSP48s. Freq. (MHz) Throughput (MSamp/Sec)

[3] Radix-2 Virtex-6 32 input : 16 - (Slices) 5620 (1%) 320 (37%) 19 -
output : 32

Ours Radix-2 Virtex-6 32 16 2657 (0.28%) 3552 (0.75%) 32 (3%) 285 285
Ours Compact Radix-2 Virtex-6 32 16 579 (0.06%) 785 (0.16%) 8 (0.92%) 285 285
[4] Radix-22 Virtex-7 64 - 538 (0.13%) 1345 (0.66%) - 158 -
Ours Compact Radix-2 Virtex-7 64 16 626 (0.15%) 848 (0.42%) 8 (0.71%) 335 335
[6] Radix-2 Virtex-6 1024 16 4699 (0.49%) 6298 (1.32%) 16 (1.85%) 366 366
[8] Radix-2 Virtex-II 1024 - 4240* (0.49%) 16960* (1.32%) - 84 -
[9] Radix-22 Cyclone-IV 1024 16 2453 (-%) 3295 (-%) 56 (-%) 231 231
Ours Radix-2 Virtex-6 1024 16 5487 (0.58%) 6926 (1.46%) 72 (8%) 285 285
Ours Compact Radix-2 Virtex-6 1024 16 626 (0.06%) 916 (0.19%) 9 (1.04%) 285 285
[5] Radix-4 Virtex-II 64 16 - (Slices) 3304 (9%) 12 (8%) 27 27
Ours Radix-4 Virtex-6 64 16 5121 (5%) 5292 (11%) 48 (16%) 285 285
Ours Compact Radix-4 Virtex-6 64 16 1992 (2%) 2138 (4%) 24 (8%) 260 260
[8] Radix-4 Virtex-II 1024 - 8940* (0.49%) 35760* (1.32%) - 80 -
Ours Radix-4 Virtex-7 1024 16 9517 (1%) 7274 (2%) 96 (3%) 317 317
Ours Compact Radix-4 Virtex-7 1024 16 2065 (1%) 1671 (1%) 25 (3%) 317 317
[10] Radix-4 Virtex-5 4096 24 1163 (2%) 1407 (2.4%) 98 (15.3 %) 200 400
Ours Compact Radix-4 Virtex-5 4096 24 2614 (4%) 3921 (6 %) 25 (3%) 167 167
Ours Radix-8 Virtex-7 4096 16 16033 (1.85%) 14100 (3.25%) 100 (2.78%) 317 317
[7] Mixed-Radix 25/16/9 Virtex-5 1296 - - 7791 + 16016 - 122 122
Ours Mixed-Radix 2/4/8 Virtex-6 1024 16 9814 (1%) 10297 (2%) 96 (11%) 285 285
[11] Hybrid-Radix Virtex-7 4-2048 16 8723 (2%) 37896 (18%) 56 (5%) 61.83 -
Ours Compact Radix-2 Virtex-7 2048 16 668 (0.16%) 921 (0.45%) 9 (0.8%) 229 229

using the datasheet of their implementation platform, the Virtex-II
FPGA. We have estimated that their designs use considerably more
LUTs than our radix-2 and radix-4 realizations. This may be due
to the fact that the Virtex-II FPGAs do not have on-chip DSP48s.
However, we note that our radix-2 and radix-4 designs multiplex two
butterfly units compared to their single butterfly unit. Thus, a more
fair comparison would be our compact radix-2 and compact radix-4
designs with those of [8]. They have also reported their latency for
radix-2 and radix-4 as 10214 clock cycles and 5440 clock cycles,
respectively. Thus, our radix-2 design completes the FFT 3551 clock
cycles earlier and our radix-4 design completes the FFT 1478 clock
cycles later. Moreover, our designs can run at considerably higher
operating frequencies. Unfortunately, they have not reported their
device utilization for the split-radix FFT. The work in [9] presents the
FPGA implementation of a Radix-22 FFT on a Cyclone-IV device.
The Radix-22 algorithm has the multiplicative complexity of the
radix-4 FFT yet retains the regular structure of the Radix-2 butter-
fly unit. They have also aimed to improve the performance from
a frequency standpoint. It is shown that while their design utilizes
fewer computational resources compared to our normal, ten-stage
Radix-2 implementation, our design can operate at a higher operat-
ing frequency. Our compact Radix-2 implementation is significantly
smaller than their design while operating at a higher maximum clock
speed. Granted, the compact architecture has a higher latency than
our normal, ten-stage design. Garrido et al [10] have also presented a
memory-based radix-4 FFT for a 4096-point transform length. Their
design consists of four memory banks and a single butterfly unit and
twiddle factor multipliers. Four values are read simultaneously and a
set of multiplexers are used to permute the inputs into the appropriate
butterfly unit input port. An address memory generation unit is used
for the select lines of the permutation multiplexers. As their design
utilizes only one butterfly unit, we compare it to our compact radix-
4 implementation, which we have synthesized on the same Virtex-5
device. While the design in [10] utilizes fewer registers, LUTs, and
runs at a higher operating frequency, they also utilize more block
RAM units (31 vs 6) and more DSP48E units (98 vs 25). The design
in [11] presents a hybrid-radix approach with a design capable of
implementing 36 different transform lengths with a two dimensional
FIFO storage scheme. For a fair comparison, we have compared our
Radix-2 design at a transform length of 2048 points, as that is their
largest supported transform length. While their design has run-time
flexibility, it is clear that our memory-based FFT architecture utilized
significantly fewer reconfigurable resources on the same Virtex-7
FPGA, while achieving a higher clock frequency. The reduction in
operating frequency is likely due to the amount of flexibility offered
by their design.

While the designs for the computational unit and memory feed-
back structure are rather compact, the memory overhead that arises
when pipelining the FFT stages remains an issue that can be fur-
ther addressed. One approach is to exploit the symmetric property
of the FFT’s SFGs, such that only the first half of the inputs going
into a butterfly set need to be stored, while the second half can be
used as they appear on the input ports. The split-radix and radix-8
implementations have relatively long latencies, which is due to the
time-multiplexing of a single butterfly unit. It would be preferable
to have a parameterizable folding factor, such that the end user can
make the choice between a lower latency, but relatively larger imple-
mentation or a more compact implementation but with a relatively
larger latency. Nevertheless, our designed FFT modules have a rela-
tively high-throughput as they produce latency, producing more than
300 million samples per second. At the cost of increased latency,
we have also developed more compact architectures for the radix-
2 and radix-4 FFTs by utilizing only a single “Radix-2 Module" or
“Radix-4 Module", respectively. The characteristics and implemen-
tation results of these two versions can be seen on Table 7, listed
as Compact Radix-2 and Compact Radix-4. Some optimizations can
also be made with regards to the twiddle factors, as not all stages
will read the entire twiddle ROM values. Finally, the wordlength, in
particular the integer wordlength of the signal representation, has a
significant impact on the maximum frequency and the area of the
FFT designs. As there is no data-scaling between stages, one can
reduce the absolute error by increasing the wordlength when using
the presented designs for large transform lengths.

Fig. 8(a) shows the execution times of the MATLAB simulation,
Graphics processing unit (GPU) simulation of FFT algorithm devel-
oped in CUDA, and the FPGA simulation. The MATLAB simulation
of FFT was executed on a 3.3 GHz Intel Core i5-3550 processor,
with 8 GB of DDR3 RAM. The GPU host computer is a Nvidia
Tesla M2090 featuring 512 CUDA cores, 1331 Gigaflops peak single
precision floating point performance, 6GB global RAM. Hardware
simulation is performed on a Xilinx Virtex-7 xc7vx690tffg1157-2
FPGA. The simulation results show that the memory-based FFT
computations on a Virtex-7 FPGA are faster than on an Nvidia Tesla
M2090 GPU for transform lengths smaller than 220.

Table 8 gives the power consumption and area utilization of a
32-point radix-2 FFT, and 64-point radix-4, radix-8, mixed-radix,
and split-radix FFT architectures with a 1.1-V core supply voltage
synthesized in a standard 45-nm CMOS technology. Synthesis was
performed using Synopsys Design Compiler while we use Cadence
SOC Encounter for place and route. All designs run at 317 MHz. Fig.
8(b) shows the chip layout of the 64-point radix-8 FFT architecture.
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Fig. 8: (a) Execution times of the workstation, GPU, and FPGA
implementations of FFT for different transform lengths and(b) the
chip layout of the 64-point radix-8 FFT.

8 Conclusion

This article presented compact, yet high-throughput parameterizable
hardware architectures for memory-based radix-2, radix-4, radix-8,
mixed-radix, and split-radix fast Fourier transform (FFT) algorithms.
The FFT architectures are parameterizable and can be synthesized
for various transform lengths. The radix-2 architecture is the small-
est design with regards to the number of lookup tables and registers.
If the FFT modules will be used in a larger design where the number
of DSP48 should remain relatively small, one can consider using the
split-radix FFT or the compact architectures for radix-2 or radix-4
FFT. When latency is of the highest concern, one can use the radix-
4 FFT at the cost of a design that is slightly larger than that of the
radix-2 FFT, but completes an N -point FFT in almost half the num-
ber of clock cycles compared to radix-2. The limiting factor of the
radix-8 FFT, aside from the computational complexity of its butter-
fly, is that the transform length must be an integer power of 8. One
could avoid this restriction so long as N is a multiple of 8, how-
ever, the digit-reversal module would no longer be functional and
sorting output values would not be trivial. The mixed-radix imple-
mentation could be used to a greater effect if some other prime
radices are developed, such as radices 3, 5, and 7, allowing for a very
wide range of transform lengths. The proposed compact and high-
throughput reconfigurable FFT architectures were implemented on
a field-programmable gate array (FPGA) and their characteristics
and implementation results were presented and compared with the
previously-published work. ASIC implementation results of FFT

Table 8 Power consumption and area utilization of different FFT algorithms.

Design N Silicon Area (µm2) Total Power (mW)

Radix-2 32 590 × 590 10
Radix-4 64 715 × 708 18
Radix-8 64 801 × 792 23
Mixed-Radix 64 742 × 741 18
Split-Radix 64 731 × 731 16

architectures in a standard 45-nm CMOS technology were also pre-
sented. Our simulation results showed that FFT computations on a
Virtex-7 FPGA is faster than on an Nvidia Tesla M2090 GPU for
transform lengths smaller than 220.
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