
1

An Efficient Hardware Architecture for
Template Matching-based Spike Sorting

Daniel Valencia and Amir Alimohammad
Department of Electrical and Computer Engineering

San Diego State University, San Diego, U.S.A.

Abstract—This article presents an efficient hardware architec-
ture for the design and implementation of a spike sorting system
using on-line template-matching. Over the past decade, various
spike sorting algorithms have been proposed, however, due to
their computational complexity, they may not be suitable for
implantable devices that have stringent area and power consump-
tion requirements. We first developed a software-based spike sort-
ing system in both floating-point and fixed-point representations.
Then we used our developed software-based spike sorting system
for (i) studying various neural signal processing algorithms and
assessing their feasibility for efficient hardware implementations
and (ii) off-line processing of previously recorded neural data and
extracting the threshold data and spike templates for configuring
our spike sorting hardware architecture. The characteristics and
implementation results of the designed spike sorting system on a
Xilinx Artix-7 A200TFBG676-2 field-programmable gate array
(FPGA) are presented. The ASIC implementation of the designed
spike sorting system is estimated to occupy 0.3 mm2. Post-layout
synthesis and simulation shows that the ASIC implementation
will dissipate 64 nW from a 0.25 V supply while operating at
a 24 kHz frequency in a standard 45-nm CMOS technology.
Compared to the previously published work, our ASIC im-
plementation consumes 96.8% less power while maintaining a
comparable sorting accuracy. Moreover, our design can run at a
higher clock frequency and uses fewer hardware resources while
achieving a 168% reduction in output data rate when comparing
the raw data sampling rate and the sorted spike output rate, yet
offers comparable spike sorting accuracy.

I. INTRODUCTION

Neuro-scientists often require a single neuron’s activity
to study how neurons correlate with each other for specific
stimulus. However, recording electrodes usually record signals
from several nearby neurons, including some background
noise. Due to the relative position of the neurons with respect
to the recording electrode, propagation and velocity effects
cause a distortion of spike shapes. Different spike shapes thus
correspond to the activity of different neurons. Spike sorting
is the process of separating the activities of individual neurons
[1], i.e., determining which spikes correspond to which neu-
rons. Conventionally, analog signals from neurons surrounding
electrodes are digitized and transmitted to an external receiver
for subsequent off-line software processing. Possible neural
recording configurations include a physical connection from
electrodes to a workstation for software processing, or wireless
transmission of neural recordings. The data rate requirements
for the wireless transmitter can become exceedingly large
especially when recording from an array of microelectrodes
or a multielectrode array (MEA) containing on the order of
100 recording sites, such as the Utah Array [2]. Depending
on the resolution and sampling rate of the analog-to-digital
converter (ADC), transmission of the raw neural recording

produced by each recording site can be a few mega bits
per second. For example, with sampling rates of up to 32
KSamples/s, ADC resolutions of 10 bits, and several recording
sites (on the order of tens to hundreds), the raw data rates
can be larger than 1 Mbps [3]. Wireless transmission of large
amounts of data when the number of electrodes approaches a
few hundred imposes serious limitations, such as the potential
threat of heat-related tissue damage, as power consumption
of the transmitter becomes too large. Since the majority of
recorded information may be redundant, power consumption
can be reduced significantly by on-chip neural signal process-
ing. Digital signal processing can thus be used to process
the recorded neural signals, which significantly relaxes the
requirements on the wireless transmission through the skull.
By performing neural signal processing at the recording site
efficiently and transmitting only the spike sorting results, data
rates and power consumption could be reduced significantly.

As shown in Fig. 1(a), the conventional process of an off-
line spike sorting consists of four different modules: (i) spike
detection, (ii) spike alignment, (iii) feature extraction, and (iv)
clustering [4]. First, spikes are detected from an incoming
bandpass (300− 3000 Hz) filtered neural signal. The detected
spikes are then aligned according to a certain attribute, such
as maximum amplitude or maximum slope. In the feature
extraction step, detected spikes are transformed to certain
features such that similar spikes will have the same features,
emphasizing the difference between spikes from different
neurons and background noise. Finally, in the clustering stage,
spikes are sorted to form groups or clusters of distinct spikes.

Each of these sub-modules of a spike sorting system can be
realized using various algorithms. While off-line processing
can utilize computationally-intensive but relatively accurate
signal processing algorithms, neural prosthetic applications
dictate that the spike sorting must be done in real-time so that
the brain commands can be performed with negligible time de-
lay and minimal data transmission rate. Therefore, it is crucial
to choose the signal processing algorithms with the optimal
balance between accuracy and computational complexity for
real-time processing while staying within the strict area and
power-density constraints. There have been several published
work in both field-programmable gate array (FPGA) [5] [6] [7]
and ASIC [8] [9] [10] [11] [12] that seek to reduce the output
sorting data-rate, minimize the sorting latency associated with
spike sorting, as well as achieving a reduction in compu-
tational resource utilization. The design in [5] presents the
FPGA implementation of a spike sorting co-processor using
a probabilistic neural network (PNN) algorithm. The work in
[6] presents a real-time spike sorting system that uses Hebbian

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2

Recorded
Neural Signal

Feature
Extraction ClusteringDetection + Alignment

Off-line Parameter Estimation

Template GenerationThreshold Parameters

Detection
Template Matching Output Spike

TrainNeural Signal

Real-time Spike Sorting

(a)

(b)

Alignment

Recorded
Neural Signal

Feature
Extraction ClusteringDetection + Alignment

Off-line Parameter Estimation

Template GenerationThreshold Parameters

Detection
Template Matching Output Spike

TrainNeural Signal

Real-time Spike Sorting

(a)

(b)

Alignment

Recorded
Neural Signal

Feature
Extraction ClusteringDetection + Alignment

Off-line Parameter Estimation

Template GenerationThreshold Parameters

Detection
Template Matching Output Spike

TrainNeural Signal

Real-time Spike Sorting

(a)

(b)

Alignment

Fig. 1: (a) The conventional process of off-line spike sorting; (b) Using extracted features from the conventional spike sorting
process, our proposed approach involves detecting spikes from neural signals, alignment to a certain metric and finally,
comparing the aligned spikes to spike templates to generate output spike trains.

learning to implement the principal component analysis (PCA)
for projecting input spikes to certain features. These two
FPGA realizations seek to reduce the processing latency while
reducing the number of utilized hardware resources. The work
in [7] targets high channel count bidirectional brain-computer
interfaces and supports on-line training to estimate spike
templates for sorting. The work in [8] performs spike detection
based on the non-linear energy operator (NEO) algorithm,
aligns to maximum-derivative, implements feature extraction
using discrete derivatives, and consists of four 16-channel
modules. The work in [9] implements absolute value spike
detection, clustering via OSort and consists of a single 16-
channel module. Similar to [9], the work in [10] implements
the OSort clustering algorithm. Spike detection is performed
using a voltage threshold and spikes are aligned to maximum
absolute amplitude (positive or negative). The work presented
in [11] performs single-channel spike sorting utilizing NEO
detection, aligns to peak amplitude, and performs feature
extraction via adaptive discrete derivatives. Thus, it has a
built in learning process, similar to other feature extraction
and OSort implementations. The work in [12] performs multi-
channel spike sorting via feature extraction as well as decision
trees in place of memory units to sort spikes into separate
classes.

In this article, we propose to significantly reduce the com-
putational complexity of single-channel real-time spike sorting
by using on-line template matching instead of performing
feature extraction and clustering. The proposed architecture
is scalable and can be readily used for spike sorting of multi-
channel systems. Template matching [13] is the process of
classifying newly detected action potentials (APs) by compar-
ing their similarity to existing spike templates. This requires
apriori knowledge of the spike waveforms, and hence, the
proposed system is configured with spike threshold and spike
template data generated by our software system using recorded

neural data, as shown in Fig. 1(b). We first developed our
proposed spike sorting system in both floating-point and fixed-
point representations in MATLAB using our custom library of
numerical operations in MEX/C. Using our developed offline
spike sorting system, various neural signal processing algo-
rithms are studied and their feasibility for efficient hardware
implementation are investigated. We also used our software-
based spike sorting system to extract the threshold data and
spike templates from recorded neural signals. These parame-
ters are used to configure our real-time spike sorting system.
Fig. 2 shows one possible system-level configuration which
interfaces our template matching-based spike sorting system
with the recording electrode, the analog-to-digital converter
and filtering unit, and the wireless transceiver (Tx/Rx) to
interface with the workstation. The system would operate in
two modes: (i) pass through mode to process recorded signals
for offline parameter estimation; (ii) online spike sorting mode
that only transmits the outputs of spike sorting, reducing the
raw data rate. The process of off-line parameter estimation,
selection of spike sorting algorithms for efficient hardware
implementation, and our developed spike sorting software
system are discussed in Section II. Sections III, IV, and V
present the designed reconfigurable hardware architectures for
spike detection, alignment, and template matching, respec-
tively. Simulation results and hardware implementation results
of the proposed spike sorting system on a FPGA are presented
in Section VI. Section VII presents our ASIC implementation
results in a standard CMOS technology and compare them
with those of the previously-published work. Finally, Section
VIII makes some concluding remarks.

II. OFF-LINE PARAMETER ESTIMATION

The requirements on the characteristics of implantable mi-
croelectronic devices are extremely stringent, especially with

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Template

Matching

Spike Sorting

Tx/RxADC

Amplified

Neural

Signal Filtering

in-vivo

Fig. 2: System-level configuration of our proposed design.

respect to size and power consumption [14]. To meet such se-
vere requirements, our proposed spike sorting system operates
in two steps: (i) off-line estimation of template and threshold
data using software and (ii) on-line detection, alignment,
and template matching using an implantable hardware. A
relatively long (about one minute) recording of neural data for
a particular or a set of electrodes is processed by our developed
spike sorting software for the estimation of the spike detection
thresholds, the creation of spike templates used for template
matching, and the template match threshold. The conventional
spike sorting process includes detection, alignment, feature
extraction, and clustering, which is computationally-daunting
for on-line implementation. Since the estimated parameters
are calculated once, it is feasible that the silicon area is not
reserved for a process with such low utilization. By estimating
the parameters offline, area and power dissipation can be
significantly reduced. These parameters are then uploaded to
the reconfigurable spike sorting hardware architecture for real-
time processing.

A. Finding Spike Detection Threshold

The purpose of spike detection is to identify a neural spike,
also known as an action potential, from ambient noise or from
the idle period of a particular neuron or a group of neurons.
The first stage of spike detection is known as pre-emphasis,
in which an operation is performed on the input signal to
prepare it for the second stage of detection, thresholding. There
are many pre-emphasizing methods used for spike detection,
such as absolute value [15], NEO [16], and discrete wavelet
transform (DWT) [17]. Thresholding consists of comparing
the pre-emphasized signal with a threshold value. If the pre-
emphasized signal crosses the threshold value, this indicates
that a spike is present. The thresholding approach based on
absolute value is not adaptive while NEO and DWT-based
detection algorithms utilize adaptive thresholding using the
probability of false alarm PFA and probability of detected
spikes PD. The energy operator can be defined as:

ψ
(
x(t)

)
=

(
dx(t)

dt

)2

− x(t)

(
d2x(t)

dt2

)
, (1)

where x(t) is the instantaneous value of the input at time t.
It can be shown that the output of NEO is proportional to the
product of the amplitude and frequency of the input signal.
For a discrete-time sequence x[n], NEO is given as:

ψ
(
x[n]

)
= x2[n]− x[n+ 1]x[n− 1], (2)

where x[n] is a sample of the waveform at time n. The
result is large only when the signal is both large in power
(i.e., x2[n]) and in frequency (i.e., x[n] is large while both

x[n+1] and x[n− 1] are small). Since a spike, by definition,
is characterized by localized high frequencies and an increase
in instantaneous energy, this method is preferred over methods
that only consider an increase in signal energy or amplitude.
Another advantage of NEO is that it is relatively simple to
implement, whether in the digital or analog domain, while
DWT is significantly more computationally-intensive. The
threshold Thr can be automatically set to a scaled version
of the mean of the recorded signal as:

Thr = C
1

N

N∑
n=1

ψ
(
x[n]

)
, (3)

where N is the number of samples in the signal and the scale
C can be chosen initially by experiment as a constant (e.g., 8).
The value of C will then be increased if PFA < 0.3 and PD

> 0.7. Using the NEO algorithm, at least 98% of simulated
neural spikes, developed as part of Wave Clus software [18],
which is a well-known and widely available unsupervised
spike sorting program developed at the University of Leicester,
can be detected.

B. Creation of Spike Templates

The earliest methods of spike sorting were performed
by sorting based on spike amplitudes [19]. However, this
approach suffers when the sensed neurons exhibit similar
amplitude spikes. An alternative approach is to use window
discriminators [20] in which one or more time amplitude
windows are defined and the waveforms crossing them are
assigned to a particular neuron. Even though implementing
window discriminators is relatively straightforward and can
be done in real-time, this approach is not practical when
a relatively large number of electrodes are used. Moreover,
windows may need to be readjusted during an experiment
due to the non-stationary nature of the recordings and the
consequent changes in spike shapes.

A different approach involves capturing features from the
spike shapes that will be used for clustering the waveforms.
For example, the peak amplitude and width of the spikes can
be passed as inputs to a clustering algorithm. However, it
has been shown in [4] that these features exhibit relatively
poor accuracy when used for differentiating spike shapes. In
general, the more discriminative features are used, the better
the ability to distinguish spike shapes. If M samples are
stored for each waveform, the spike shapes can be represented
as points in an M -dimensional space. The complexity of
clustering in a relatively large dimensional space demands di-
mensionality reduction, which only maintains the features that
help the classification, given that eliminating inputs dominated
by noise can improve clustering outcomes. The key challenge

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

Fig. 3: Graphical user interface of the developed software-based spike sorting system.

is, however, selecting the minimal set of features that yields
the best discrimination.

One of the most commonly used feature extraction and
dimensionality reduction methods is PCA [21]. PCA gives an
ordered set of orthogonal vectors that captures the directions of
largest variations in the data and a waveform is represented as
a linear combination of its principal components. Using only
the first K components can account for most of the energy in
the data and their scores can be used as an input to the cluster-
ing algorithm. The dimensionality reduction is thus achieved
by going from an M -dimensional space to a K-dimensional
space, with K � M (typically, K equals to 2 or 3). During
the off-line parameter estimation, PCA is performed on all
detected spikes to create a subspace of maximum variance,
which can be used to extract common features between spikes.
The DWT has also found an application in feature extraction,
as discussed in [18]. The output coefficients of the DWT,
which describe both the time and frequency domains, can
thus be used as features for clustering. Additionally, discrete
derivatives, which computes the slope at each sample point
of the spike, can be considered as a simplified DWT and has
been used for feature extraction [22]. The integral transform
(IT) [23] has also been used for feature extraction, where the
discriminating features are the areas under the positive and
negative portions of the AP. The appeal of the IT is its inherent
reduction to two features.

Various clustering algorithms have been used for spike
sorting. In manual cluster cutting [4], extracted features were
plotted in a scatter plot, and cluster boundaries were defined
manually. k-means clustering [24] is a commonly used cluster-
ing algorithm in the field of spike sorting, where an operator
first defines k number of clusters, the k cluster centroids are

randomly defined, and the new data points are assigned to
the closest cluster by means of a distance metric. Once a
cluster is assigned, the cluster centroid is recomputed as the
mean of that cluster. The main disadvantage of these two
clustering algorithms are that they require user supervision.
One of the most efficient unsupervised clustering algorithm
is OSort [25]. In principal, OSort uses the detected spikes to
create spike clusters “on-the-fly”; the first spike is assigned
to its own cluster, and newly detected spikes are compared to
each cluster and are assigned to the nearest cluster according
to the Euclidean distance metric.

The graphical user interface (GUI) of our developed
software-based spike sorting system is shown in Fig. 3. This
system is used for algorithm exploration, offline processing of
recorded neural data, and extracting the template spikes, along
with the spike detection and clustering threshold values. The
software system performs all steps of the off-line spike sorting
signal processing chain shown in Fig. 1 using a library of
alternative algorithms. For spike detection, the absolute value,
NEO, and DWT are supported. The user can select between the
maximum amplitude and maximum slope for spike alignment,
as well as various feature extraction algorithms, such as PCA,
discrete derivatives, wavelet decomposition, and integral trans-
form. For clustering, the system supports the Osort algorithm,
and k-means. After clustering, the software displays all spike
waveforms corresponding to various spike clusters. In Fig. 3,
it is shown that a dataset is processed using NEO-based spike
detection, spikes are aligned to maximum amplitude, PCA
is used for feature extraction, with the maximum difference
test for dimensionality reduction, and k-means clustering.
Note that the two large clusters, shown in blue and red, are
formed, while a smaller set of spikes have some common

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

features, shown in green, in the Clustered Points feature
projection space. The spikes are then clustered and color coded
accordingly in the Clustered Spikes view. The smaller set of
spikes have some common features along the Y axis in the
feature projection space, which are shown to be the maximum
amplitudes of the spikes shown in green in the Clustered
Spikes view. Note, however, that they have more variation
compared to the red and blue waveforms.

We used the OSort algorithm to estimate spike templates
without the need for apriori signal information. OSort will of-
ten converge to the N most-often occurring spike waveforms,
which will form clusters. The number of generated clusters
depends on the number of sortable neurons relative to the
position of the recording electrode. Using simulated datasets
with known ground truth, three spike waveforms can be used
to represent the large majority of the types of waveforms
that are detected. Therefore, these most commonly occurring
waveforms are selected as spike templates and are used for
template-matching in our spike sorting system. This is also
convenient for estimating the maximum distance threshold,
which is used to determine whether a new spike is that of
the same class or type as that particular waveform. Note that
while three templates are utilized for the selection of templates
in this proposed design, the number of templates for practical
applications can vary. For example, templates can be used to
model overlapping spikes of known waveforms, which can
help alleviate the overlapped spike problem. Note that the
number of templates that are given dictates the number of
sortable neurons, and as stated previously, the number of
neurons that require sorting can vary between applications.
Thus, our selection for the three most commonly occurring
waveforms is appropriate for the ground truth dataset, which
is mainly used to quantify the relative sorting performance of
our proposed design. Since the estimation of spike templates
is performed offline using our developed software system
running on a workstation, alternative spike clustering algo-
rithms can be utilized. For example, if PCA has the best spike
waveform discrimination on a given dataset, then PCA can be
used to cluster the spikes and create cluster average waveforms
to use as static spike templates for the hardware.

III. SPIKE DETECTION ARCHITECTURE

Fig. 4 shows the architecture of the designed and imple-
mented NEO-based spike detection unit. The input signal is
shifted into the NEO Shift Reg, which is used to delay the input
signal accordingly to compute the energy of the signal at any
given sample x[n]. The energy output ψ[n] is then compared to
the energy threshold. If the energy output matches or exceeds
the given threshold value, the comparator will assert a high
output value, which indicates to the alignment unit that a
spike is present in its respective buffer. The given threshold is
programmed by setting the threshold to the desired value while
asserting the PROG input high. The NEO scalar, given as C
in (3), is estimated via the PFA and PD, which are computed
during the offline parameter estimation phase. This allows the
end-user to readily fine-tune the threshold value used for spike
detection.

NEO Shift Reg

×

×

–

NEO

x[n] x[n-1]x[n+1]

ψ[n]

≥

Comparator

Input
Signal

PROG

Spike
Present

Fig. 4: Architecture of the NEO-based spike detection unit.

IV. SPIKE ALIGNMENT ARCHITECTURE

For efficient template matching, spikes must be aligned.
Aligning to the maximum amplitude is commonly used, as it is
both computationally-simple and it allows the template match-
ing module to easily differentiate spikes from one another.
Because the stored templates are also aligned to maximum
amplitude, this requires the detected spikes to be aligned to
the same metric to increase the consistency of the template
matching unit. As shown in Fig. 5, the spike alignment unit
consists of two main buffers: the Master Buffer shift register,
which receives new values of the input signal every clock
cycle, and the MBA shift register. The MBA shift register is a
parallel-in parallel-out register that copies the values stored
in the Master Buffer when the Spike Present input signal is
asserted by the NEO-based spike detection unit. The Spike
Present signal is delayed using an N -bit shift register to allow
the detected spike to buffer more input data for more accurate
alignment. The Control Unit will assert the LOAD signal high to
copy the contents of Master Buffer to MBA. The Control Unit then
begins reading values from the MBA by controlling the select
line IDX accordingly. The first value read from MBA is stored
in the max value register MR by asserting the register enable
signal MVU high. During all subsequent reads, the value read
from the MBA will be compared to the value currently stored in
MR, with MR being updated accordingly. The Control Unit also
stores the index of the maximum value. The alignment point,
which can be defined by the user as a top-level parameter,
is used such that the maximum amplitude of each spike lies
at the chosen alignment point index. This helps to prevent
erroneous comparisons in the template matching module that
would occur from temporal shifts in the waveforms, which can
induce a significant distance metric error.

Disregarding the Spike Present buffering latency, that is, the
time of actual spike occurrence delayed by the buffers, the
alignment unit takes 17 clock cycles to find the maximum
value within the master buffer. The latency is directly related
to the number of samples in a spike waveform, the chosen
alignment point, and the size M of the master buffer and
the MBA. The alignment unit begins reading values from the
alignment point index to max address, which is computed
as M − (NSS − AP), where M denotes the size of the
master buffer, NSS denotes the number of samples in a spike
waveform, and AP denotes the chosen alignment point. For
64-sample spike waveforms, buffer size M = 80, and an
alignment point of 23, the maximum value search spans 17
values starting from the alignment point. Assuming a 24 kHz

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

sampling rate, the search spans 0.7 ms of signal time. The
max index is used to then part select the parallel output of
MBA, shown by the [] block, such that the maximum value
is placed at the alignment point. The Control Unit also asserts
an output flag to notify the template matching module that an
aligned spike is ready.

One challenge during spike detection and alignment is due
to the overlapping of spikes, i.e., when more than one spike
resides in the detection window. While the refractory period of
a neuron will prevent same-neuron overlapping, neurons can
fire at around the same time. Thus, the input to the system is
the summation of signals at the electrode. In the worst case,
our system will incorrectly match the overlapped spikes to one
of the given templates and in the best case, our system will
not classify the overlapped spikes.

Master Buffer
M

…..

…..

…..

MBA

MR >

…..

Control
Unit

IDX

MVU

[]

Aligned
Spike

LOAD

Input
Signal

Spike
Present

Buffer
N

Fig. 5: Architecture of the spike alignment unit.

V. TEMPLATE MATCHING ARCHITECTURE

During template matching, the Euclidean distance metric is
used for matching a new spike waveform to a template. The
Euclidean distance is given as:√

(x0 − y0)2 + (x1 − y1)2 + ...+ (xN−1 − yN−1)2 < TM ,
(4)

where xk denotes the k-th sample of the detected spike
waveform, yk denotes the k-th sample of the template spike
waveform, N denotes the number of samples used to represent
a spike, and TM denotes the match threshold. The match
threshold defines the maximum distance the detected spike can
be away from the template spike in order to classify it as part
of that particular spike cluster. Since the off-line parameter
estimation stage has access to significantly more storage, TM
is typically given as the standard deviation of the filtered neural
recording.

Once the detected spike has been aligned, the last step is
to classify the incoming spike from the alignment unit via
template matching, which will indicate whether the spike is
similar enough to one of the available templates. Utilizing the
simulated neural data provided by WaveClus, we have opted to
use three spike templates, each 64 samples long. The system
can support an arbitrary number of spike templates at the cost
of a larger silicon area due to the additional template memory
requirement, as well as additional hardware to perform the

comparison with the additional template. To classify the
spikes, the Euclidean distance between an aligned spike and
the three template spikes are calculated simultaneously based
on Equation (4). To avoid implementing a square root unit,
both sides of Equation (4) are squared as:

(x0 − y0)
2 + (x1 − y1)

2 + ...+ (x63 − y63)
2 < T 2

M . (5)

…..

Template Spikes

…..

…..
0

1

0

1

0

1

Temp. Data

Temp. Prog

…..
Aligned Spike

SDA

ASR

MIN <

PROG

Control
Unit

SDA

SDA

ASR_EN

Temp_EN

SDA_C
Min

Valid
Index

Train Out

Fig. 6: Architecture of the template matching unit.

Fig. 6 shows the architecture of the designed template
matching unit. The aligned spike is passed to the ASR shift
register, which is configured for parallel-input and serial-
output. The template spikes are stored in serial-in, serial-out
shift registers during an initial programming sequence. The
programming sequence involves shifting the spike template
values on the Template Data port and setting the 3-bit Template
Prog input to its proper value to program the respective
template. The values stored in the templates and the ASR
are shifted into the SDA units. The SDA units are used to
compute and accumulate the squared difference between the
spike waveform stored in the ASR and the templates. For spikes
represented using 64 samples, it will take 64 clock cycles to
compute the sum of squared differences between the aligned
spike and each stored template. The MIN unit finds and passes
the minimum value to the comparator, as well as the minimum
value index to the Control Unit. If the minimum value is less
than or equal to the stored maximum distance threshold, the
comparator asserts the Min Valid signal high. The Control Unit
will then set assert one of the bits of the 3-bit train output high
to generate the spike train output. Thus, the large reduction of
raw data to sorted spikes is due to only transmitting sorted
spikes which are discriminated against only a small set of
commonly occurring waveforms (templates).

VI. SIMULATION AND FPGA IMPLEMENTATION RESULTS

The top-level diagram of the proposed spike sorting system
is shown in Fig. 7. The input control signal PROG is used
to configure the system using the spike threshold, clustering
threshold, and template spikes. The input from the recording
electrode is given as input to both the detection and alignment
units, while the input to the template matching unit is an
aligned spike of size WL × NSS, where WL denotes the
input signal wordlength and NSS denotes the number of
samples in a spike waveform. The designed spike sorting
system implemented on a Xilinx Artix-7 XC7A200TFBG676-
2 FPGA utilizes 4880 (1%) slice registers, 6628 (1%) lookup-
tables (LUTs), and 5 (0.67%) DSP48E1 dedicated multipli-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

ers. Because we utilize shift registers for storing template
waveforms, no dedicated block RAM (BRAM) resources were
utilized. While the spike detection module runs at the sampling
frequency, the maximum operating frequency of the proposed
spike sorting system is 102 MHz. After detecting a spike,
our spike sorting system classifies the spike with a latency of
68 clock cycles. Fig. 8(a) shows the relative reconfigurable
resource utilization of the FPGA when the Template Match
unit is configured to support a varying number of template
memories. Fig. 8(b) shows the maximum operating frequency
of the FPGA when supporting various numbers of templates.
While the resource utilization increases at a relatively low
rate, it can be seen that supporting more than 4 clusters
affects the maximum operating frequency. The optimal number
of templates may vary between test subjects and/or neural
recordings.

Detect

Neural Input

Spike Threshold

PROG
Align

Template
Match

Temp. Data
Max Dist.

Spike Train

Fig. 7: Block diagram of the designed spike sorting system.

(a)

(b)

Fig. 8: (a) Relative utilization of FPGA resources and (b) max-
imum operating frequency for varying number of supported
templates.

We have tested our spike sorting hardware against
the WaveClus software for the two provided datasets:
C Easy1 Noise01 and C Difficult1 Noise005 [18], which
have signal-to-noise ratios (SNRs) of 0.1 and 0.05, respec-
tively. Threshold parameters and spike templates were esti-
mated using our software-based spike sorting system and then
simulated using the Xilinx Vivado simulator.

To quantify the performance of our designed spike sorting
system, we have employed the commonly-used F-score metric
[26], which expresses the mean precision and sensitivity as:

F =
2TP

2TP + FP + FN
,

where TP , FP , and FN denote the number of true positives, the
number of false positives, and the number of false negatives,
respectively. A true positive is defined as a spike that has
been classified correctly by our system. The classification is
verified against the dataset by comparing the spike waveform
as well as the time that the spike occurs. A false positive is
defined as a spike that is classified, but does not exist in the
dataset itself. A false negative is defined as a spike that exists
in the dataset, but is not classified by our system. In testing
with the two datasets, our design does not detect false positive
spikes. Note that while the NEO-based spike detector may
detect and pass false positive spikes to the alignment unit and
template matching unit, the Euclidean distance between the
false positive spikes and the verified templates will be greater
than the maximum distance threshold in our testing, and will
not produce a spike train output. In practical applications,
however, it is possible for the template matching module
to classify false positive spikes. For the Easy1 Noise01 and
Difficult1 Noise005 datasets, our design achieves F-scores of
0.933 and 0.939, respectively. For the Easy1 Noise01 and
Difficult1 Noise005 datasets, our design did not classify 438
and 384 spikes, respectively, due to the template matching unit
being busy when detected by the detection unit. While it can
be ensured that all detected spikes are maintained for classi-
fication by implementing a queue for storing detected spikes,
however, the queue requires a significant amount of hardware
resources, which considerably increases the silicon area and
power consumption of the overall circuit. Additionally, some
spikes may also be missed because of overlapped spikes that
are not classified, as the overlapping spike templates have not
been modeled. This is the tradeoff between using template-
matching for spike sorting compared to the computationally-
intensive, conventional off-line spike sorting processes. By
limiting the number of template spikes, the number of can-
didate spikes that will appear at the spike train output may
result in reduced accuracy. However, this reduces the total
number of computations required to classify spikes. However,
our simulation and implementation results verify that efficient
real-time spike sorting is feasible for hardware implementation
of implantable devices with comparable performance to offline
spike sorting that uses more accurate, but significantly more
computationally-intensive neural signal processing algorithms.
Table I gives the characteristics and implementation results
for our proposed design and the relevant published work for
various wordlengths and different FPGA devices. The design

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

TABLE I: The characteristics and implementation results of various spike sorting realizations on different FPGAs.

Work Algorithm Device WL.WF Regs. (%) LUTs. (%) BRAMs (%) DSP48s. (%) Freq. (MHz) Sorting Sorting
Latency Accuracy

[5]* PNN Virtex-6 16.7 3936 (1%) 13776 (7%) 7 (1%) 54 (4%) 100 6.7 µs -
Ours Template Virtex-6 16.11 4880 (1%) 6635 (3%) 0 (0%) 5 (0.6%) 122 0.55 µs -

Matching
[5]* PNN Virtex-6 32.23 3936 (1%) 17712 (9%) 7 (1%) 92 (13%) 100 6.7 µs -
Ours Template Virtex-6 32.20 9616 (2%) 12729 (6%) 0 (0%) 11 (0.8%) 95 0.71 µs -

Matching
[6]** Hebbian Spartan-6 10 ∼6216 (3%) ∼4662 (5%) 41 (15%) - - 0.96 µs 95%

Ours** Template Spartan-6 10.8 804 (0.43%) 1085 (1%) 0 (0%) 3 (1%) 78 0.87 µs 90%
Matching

[6]** Hebbian Spartan-6 16 ∼8904 (5%) ∼6678 (7%) 65 (24%) - - 0.96 µs 95%
Ours** Template Spartan-6 16.11 1224 (0.66%) 1572 (1.7%) 0 (0%) 3 (1%) 78 0.87 µs 90%

Matching
Ours OSort Virtex-6 16.11 8444 (2 %) 16472 (9 %) 29 (4 %) 130 (9 %) 123 0.25 µs 87%

*The authors in [5] utilize a floating-point number representation with 1 sign bit, 8 exponent bits, and WF fraction bits.
**The authors in [6] report the utilization for the Hebbian Eigenfilter module only.

in [5] presents the FPGA implementation of a spike sorting
co-processor using a probabilistic neural network (PNN) al-
gorithm. They utilize a custom-defined floating-point number
representation with 1 sign bit, 8 exponent bits, and 7, or 23,
fraction bits for their 16 and 32 bit designs, respectively. For a
fair comparison, we have synthesized our design on the same
FPGA with the same wordlengths. The design in [5] uses
fewer registers than our design since we use a larger 80-sample
detection window. However, our design uses fewer LUTs and
DSP48E1 units. Moreover, our design does not use BRAM
resources. While wider bus widths interconnecting the units
shown in Fig. 7 contribute to the size of the system, spikes
are transferred within the system in this fashion to minimize
the latency between detection and classification. Moreover, the
classification time, which is the computation time after spike
detection given in Table I, indicates the advantage of spike
sorting based on template matching over the ones based on the
probabilistic neural network algorithm. The work in [5] reports
a spike sorting performance of 92% accuracy. However, we
cannot directly compare the accuracy of their work and ours
because they use a dataset that is not openly available.

The work in [6] presents a real-time spike sorting system
that uses Hebbian learning to implement the principal compo-
nent analysis for projecting input spikes to certain features.
They present results for 10-bit and 16-bit wordlengths, as
well as modeling their designs using MATLAB’s fixed-point
toolbox, but do not report if any bits are allocated for the
fraction. Their target device was a Xilinx Spartan-6 FPGA
and their resource utilization was reported based on the recon-
figurable slices. For a fair comparison, we also implemented
our designs using the same two wordlengths, on the same
target device. Note that the design in [6] only reports the
implementation results of the Hebbian Eigenfilter hardware.
Therefore, for a fair comparison, we have chosen to compare
their Eigenfilter hardware to our implemented template match-
ing hardware, as both designs identify and classify the input
spikes accordingly. We have estimated their register and LUT
usage using the conversion information in [27]. It is shown
that template matching uses considerably fewer reconfigurable
resources for classification of input spikes. Unfortunately, they
have not reported their operating frequency, but their reported

projection time is longer than our sorting latency. The authors
in [6] reported 95% spike sorting performance when sorting
spikes from three neurons. When the number of neurons
increases from three to four, they reported 85% spike sorting
performance accuracy. While the overlapping spikes contribute
to performance reduction, we anticipate that the accuracy of
our spike sorting system based on template matching would
also experience a slight decrease in spike sorting performance,
however, due to the larger number of APs to sort, the system
would require more template spike memories.

While an increase in operating frequency naturally incurs
an increase in power consumption, note that the results in
Table I are for FPGA implementations. Thus, the maximum
operating frequency metric is used when the spike sorting
system is implemented on a FPGA for off-line acceleration of
spike sorting. Because it is an off-line system, the classification
steps of the spike sorting designs can be run at their maximum
operating frequency to reduce the sorting latency as given in
Table I.

We have also implemented the OSort algorithm on a
Virtex-6 FPGA for comparison with the proposed template-
matching approach. The OSort clustering unit is implemented
using several BRAMs to store the growing clusters, which
implements on-chip learning. Realizing the OSort algorithm
utilizes significantly more resources than the proposed tem-
plate matching approach. Our implemented OSort unit utilizes
roughly twice as many registers, three times as many LUTs,
and 26 times more dedicated DSP48. Because more hardware
resources are used, note that the sorting latency is decreased
compared to the template matching approach. However, for
an efficient realization for in-vivo spike sorting, we opt to use
the template matching approach, which utilizes significantly
fewer dedicated multiplication units and BRAMs.

Multichannel-based designs are also of interest with the
advent of high-density MEAs. Note that because of the hybrid
offline-online approach, our in-vivo spike sorting ASIC works
on a per-electrode basis. That is, there is no strategy that has
been implemented which accounts for the spatial correlation
between groups of neurons. The work in [7] has implemented
a multi-channel sorting design on a Xilinx Kintex-7 FPGA,
but they fail to list their relative resource utilization for

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

TABLE II: The ASIC implementation results of different spike sorting systems.

Work This Work [8] [9] [10] [11] [12]
Algorithm Template Matching Feature Extraction OSort OSort Feature Extraction Feature Extraction
Technology 45-nm 90-nm 65-nm 45-nm 45-nm 130-nm

Core voltage 0.25 V 0.55 V 0.27 V - 1.1 V 1.2 V
Operating frequency 24 kHz 4 MHz 480 kHz 56 kHz 960 kHz 160 kHz

Area per channel 0.30 mm2 0.06 mm2 0.07 mm2 0.07 mm2 2.7 mm2 0.023 mm2

Power per channel 64 nW 2 µW 4.68 µW 10.3 µW 20 µW 750 nW
Average accuracy 90% 77% 75% 93% 84.5% -

Data rate 3200× 11× 240× 278× 240× -
reduction

comparative analysis. We can anticipate that because their
design implements on-line training functionality to generate
templates for matching, it likely utilizes significantly more
reconfigurable resources than our proposed design. They do
list the required memory per channel in kilobits for a 16-
bit data resolution as 6 kilobit/channel. In terms of memory
utilization, our proposed design stores three 64-sample tem-
plate waveforms with 16-bit data resolution, which could be
interpreted as 3.072 kbit/channel. The work in [28] uses the
MEA, however, since they have not utilized the same dataset,
we cannot directly compare our spike sorting performance
with their’s. However, we can estimate that scaling our design
to sort the APs of 128 neurons using an array of electrodes
(e.g. Utah Array) would require at least 43 instances of
our design, assuming 3 templates per electrode. On a high-
end Xilinx Virtex-6 device, we can potentially fit about 68
instances, to detect APs of up to 204 neurons, with 98% LUT
utilization.

In practical applications, the following steps can be taken
to use the proposed template matching-based spike sorting
system: (1) A neural recording is taken from the subject
and processed offline on a workstation. Because the spike
waveforms vary from person to person, it is vital to estimate
initial detection threshold parameters, template waveforms,
and maximum distance thresholds. Additionally, as mentioned
earlier, slight electrode movements can induce changes in
waveform appearance, which would require reprogramming
of the spike sorting system; (2) Programming the proposed
system with the estimated parameters from Step (1). The
programming phase would involve first asserting the RST
signal for the device high for at least M clock cycles, where M
denotes the size of the master buffer in the alignment unit. The
RST signal must be held for this long to allow for the input
zero to propagate through the shift registers, thus resetting
them. After, the RST signal is de-asserted, the PROG input
signal and the Template Prog inputs are asserted accordingly
to program the spike template shift registers; (3) Finally, the
output of the recording electrode is fed into the spike sorting
system and the device will process and sort the spikes in
real-time. This allows researchers to study the behavior of
neurons of interest in real-time rather than studying the neural
recordings on a workstation post-experiment. Also, researchers
can fine-tune the estimated threshold parameters should the
system detect too few or too many spikes than expected for
the given experiment. Moreover, the template matching unit is
the key component to significantly reducing the output spike

data-rate. The template matching unit will only assert output
signals when a newly detected spike matches one of the given
templates. Therefore, it eliminates the transmission of non-
spike information, and additionally, reduces the amount of data
needed to represent the spike information down to L, where
L represents the number of supported template spikes in the
system.

VII. ASIC IMPLEMENTATION RESULTS

Our designed spike sorting system has also been imple-
mented in ASIC using the FreePDK45 process design kit for
a 45-nm CMOS process [29], with a 0.25 V supply voltage.
Synthesis was performed using Synopsys design compiler and
place-and-route was done using Cadence SoC Encounter. The
design was synthesized for a 24 kHz operating frequency,
however, timing analysis performed using Synopsys Primetime
concludes that the ASIC can operate at a maximum operating
frequency of 186 MHz. The ASIC chip layout shown in
Fig. 9 is estimated to occupy 0.3 mm2 and dissipate 64 nW
of power while operated at 24 kHz. After the chip layout
was completed, a final Verilog netlist was generated, and the
design was compiled and simulated using Synopsys Verilog
Compiler Simulator (VCS) and Discovery Visual Environment
(DVE). The HDL testbench simulated in DVE, which consists
of performing template waveform programming and normal
template matching operation on a simulated dataset provided
by Wave Clus, dumps the switching activity of the post-
layout internal nets of the design into a variable change dump
(VCD) file. The VCD file was then read in Cadence SoC
Encounter to accurately estimate the power consumption of
the design. The hardware architectures for FPGA and ASIC
implementations are identical, with the main differences being
that the FPGA synthesis tool utilizes shift register lookup
tables (to implement the various shift registers in the design),
compared to using positive-edge triggered standard cells for
the ASIC.

To investigate the feasibility of our spike sorting system
as a brain implantable device, we have calculated important
parameters, such as transmission power and power density of
our ASIC. During spike sorting operation, the sampling bitrate
rs is 24 Kbps and using 16 bits for representation of the neural
signal results in an input bitrate of 384 Kbps. As the typical
spiking rate of a neuron is 40 spikes per second [1], using
3 bits to represent the spike train output, the output bitrate
ro is 120 bps. Thus, our template matching spike sorting
system effectively reduces the bitrate by a factor of 3200.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

553

5
5
5

µm2

Fig. 9: Chip layout of the designed template matching spike
sorting ASIC in a standard 45-nm CMOS process.

This reduction in output data rate significantly reduces the
transmission power, thus reducing the amount of power needed
for the wireless transmission of the output spike train. Note
that this large amount of reduction is possible due to the fact
that the template-matching approach discriminates to fewer
spike waveforms compared to other conventional approaches
while achieving comparable sorting accuracy. According to
[30], the energy required to transmit one bit of data is 3
nJ, which results in a transmission power of about 0.36 µW
with a ro bitrate. Thus, the total power of our ASIC chip
is 0.42 µW and the power density of our 0.3 mm2 chip
comes to 1.27 µW/mm2, which is well within the tissue-safe
requirements [14].

Table II gives the ASIC implementation results of different
spike sorting systems. As the ASIC chips in [8], [9], and
[12] are multi-channel designs, we listed the area and power
consumption results for a single channel for a fair comparison.
As given in the table, our ASIC implementation consumes
96.8% less power per channel than other published works, yet
still maintains a comparable sorting accuracy.

For the ground truth dataset used to quantify the perfor-
mance of our proposed design, three templates are sufficient.
However, some applications may require the use of larger
numbers of templates to model the overlapping of specific neu-
rons. Consider the following example of an electrode which
detects the action potentials of 3 neurons A, B, and C. Seven
template waveforms may be required to account for poten-
tial overlapped spikes

([
A, B, C, AB, AC, BC, ABC

])
.

However, this number of templates does not account for
any relative time-shifts that the overlapped spikes can take.
Thus, because of the combinatorial explosion that can re-
sult from attempting to model every possible overlap, pre-
processing and analysis of neural signals is required to obtain
the optimal number of templates. While different similarity
measures between data and templates, such as Euclidean
distance [31] [32] and cross-correlation [33] [34], have been
employed for the selection of templates, a significantly more
accurate approach for estimating the optimal templates was
proposed by a form of linear filtering [35], which can be
derived via Fisher’s linear discriminant analysis [36]. In this
approach, extracellular recordings were considered as having
two different linearly added components, background activity
(noise and action potentials from far away neurons) and spikes
from close-by cells. Template matching was then performed
using a finite impulse response (FIR) filter, which under the
assumption of Gaussian noise is optimal in a Bayesian sense.

(a)

(b)

(c)

Fig. 10: (a) Area utilization, (b) maximum frequency, and (c)
power consumption of the ASIC with storage for 3 to 30
template waveforms.

One advantage of the template matching approach is that
template waveforms can be reconfigured, thus allowing the
users to fine-tune the templates that are in use. For example,
if the overlapping of two particular neurons is of importance,
that particular overlapping can be modeled and stored as a
template.

For efficient hardware realization, the optimal number of
templates needs to be determined during the pre-processing of
neural signals. While the details of this estimation are beyond
the scope of our work, the limits of reconfigurable resources
available on the target platform and power consumption of
the implemented circuit place an important upper bound on
the number of templates that can be modeled and stored.
To explore the impact of the number of templates on the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

implementation results of the template matching circuit, Fig.
10(a) shows the die area consumed by supporting 3 to 30
templates in the template matching portion of the ASIC. Fig.
10(b) shows the maximum operating frequency for supporting
3 to 30 templates. Naturally, more template memory results in
an increase in silicon area, however, the maximum frequency
varies between 187 MHz to 30 MHz. Fig. 10(c) shows the
power consumption of the ASIC for supporting 3 to 30
templates. One can see that the power consumption grows
roughly linearly with the increasing number of templates. As
seen in Figs. 10(a) and 10(c), the most impactful aspects
of increasing the number of templates are the silicon area
and power consumption. While this does decrease the overall
power density, it is simply due to the increase of silicon area.
Additionally, an increase in the number of supported templates
greatly diminishes the maximum operating frequency of the
design, which is of importance for practical applications that
execute different steps of spike sorting at different clock do-
mains. For example, one may choose to increase the operating
speed of the spike detection and alignment unit, such that
the delay between alignment and classification is minimized.
Note that due to the reconfigurable nature of FPGAs, the
FPGA implementation can readily be scaled to support a large
number of templates given the availability of computational
resources and storage elements on the target device. For ASIC
implementations, the number of templates is fixed.

VIII. CONCLUSION

This article presented an efficient hardware architecture for
spike sorting using template matching. The computationally-
daunting tasks of feature extraction and clustering used in the
conventional spike sorting systems were performed off-line
using our developed software-based spike sorting system on a
workstation. By estimating template spikes from spike clusters,
the hardware resource requirement and output data rates were
significantly reduced. Comparison with the alternative spike
sorting systems has confirmed that our design accurately sorts
neural spikes using a smaller silicon area and significantly
lower power consumption, while providing comparable perfor-
mance. Our smaller and more power-efficient design makes it
a suitable candidate for a multi-channel spike sorting system
by instantiating multiple of the proposed spike sorting designs
and time-multiplexing input/output ports.

ACKNOWLEDGMENT

This work was supported by the Center for Neurotechnology
(CNT), a National Science Foundation Engineering Research
Center (EEC-1028725).

REFERENCES

[1] S. Gibson, “Neural spike sorting in hardware: From theory to practice,”
Ph.D. dissertation, University of California Los Angeles, 2012.

[2] R. R. Harrison et al., “A low-power integrated circuit for a wireless 100-
electrode neural recording system,” IEEE Journal of Solid-State Circuits,
vol. 42, no. 1, pp. 123–133, 2007.

[3] R. H. Olsson and K. D. Wise, “A three-dimensional neural recording
microsystem with implantable data compression circuitry,” IEEE Journal
of Solid-State Circuits, vol. 40, no. 12, pp. 2796–2804, 2005.

[4] M. S. Lewicki, “A review of methods of spike sorting: the detection
and classification of neural action potentials,” Network: Comput. Neural
Syst., vol. 9, no. 4, pp. R53 – R78, 1998.

[5] D. Wang, Y. Hao, X. Zhu, T. Zhao, Y. Wang, Y. Chen, W. Chen,
X. Zheng, “FPGA implementation of hardware processing modules as
coprocessors in brain-machine interfaces,” in International Conference
of the IEEE Engineering in Medicine and Biology Society, 2011, pp.
4613 – 4616.

[6] B. Yu, T. Mak, X. Li, F. Xia, A. Yakovlev, Y. Sun, C. Poon, “Real-time
FPGA-based multichannel spike sorting using Hebbian Eigenfilters,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 1, no. 4, pp. 502 – 515, 2011.

[7] J. Park, G. Kim, S. Jung, “A 128channel FPGA-based real-time spike-
sorting bidirectional closed-loop neural interface system,” IEEE Transac-
tions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 12,
pp. 2227–2238, 2017.

[8] V. Karkare, S. Gibson, D. Markovic, “A 130-µw, 64-channel neural
spike-sorting DSP chip,” IEEE Journal of Solid-State Circuits, vol. 46,
no. 5, pp. 1214–1222, 2011.

[9] V. Karkare, S. Gibson, D. Markovic, “A 75-µw, 16-channel neural spike-
sorting processor with unsupervised clustering,” IEEE Journal of Solid-
State Circuits, vol. 48, no. 9, pp. 2230–2238, 2013.

[10] Y. Liu, J. Sheng, and M. C. Herbordt, “A hardware design for in-brain
neural spike sorting,” in IEEE High Performance Extreme Computing
Conference, 2016, pp. 1–6.

[11] M. Zamani, D. Jiang, and A. Demosthenous, “An adaptive neural spike
processor with embedded active learning for improved unsupervised
sorting accuracy,” IEEE Transactions on Biomedical Circuits and Sys-
tems, vol. 12, no. 3, pp. 665–676, June 2018.

[12] Y. Yang, S. Boling, A. Mason, “A hardware-efficient scalable spike
sorting neural signal processor module for implantable high-channel-
count brain machine interfaces,” IEEE Transactions on Biomedical
Circuits and Systems, vol. 11, no. 4, pp. 743–754, 2017.

[13] J. J. Capowski, “The spike program: A computer system for analysis
of neurophysiological action potentials,” in Computer Technology in
Neuroscience, P. B. Brown, Ed. Washington: Hemisphere Publishing
Corporation, 1976, ch. 17, pp. 237–251.

[14] S. Kim, P. Tathireddy, R. A. Normann, and F. Solzbacher, “Thermal
impact of an active 3-D microelectrode array implanted in the brain,”
IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 15, no. 4, pp. 493–501, 2007.

[15] I. Obeid, P. D. Wolf, “Evaluation of spike-detection algorithms for a
brain-machine interface application,” IEEE Transactions on Biomedical
Engineering, vol. 51, no. 6, pp. 905–911, 2004.

[16] J. F. Kaiser, “On a simple algorithm to calculate the ‘energy’ of a signal,”
in Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing, 1990, pp. 381 – 384.

[17] K. H. Kim, S. J. Kim, “A wavelet-based method for action potential
detection from extracellular neural signal recording with low signal-to-
noise ratio,” IEEE Transactions on Biomedical Engineering, vol. 50,
no. 8, pp. 999 – 1011, 2003.

[18] R. Quiroga, Z. Nadasdy, Y. Ben-Shaul, “Unsupervised spike detection
and sorting with wavelets and superparamagnetic clustering,” Neural
Computation, vol. 16, no. 8, pp. 1661 – 1687, 2004.

[19] W. Simon, “The real-time sorting of neuro-electric action potentials in
multiple unit studies,” Electroencephalography and Clinical Neurophys-
iology, vol. 18, no. 2, pp. 192–195, 1965.

[20] R. Q. Quiroga, “Spike sorting,” Scholarpedia, vol. 2, no. 12, p. 3583,
2007.

[21] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” Journal of educational psychology, vol. 24, no. 6, p. 417,
1933.

[22] Z. Nadasdy, R. Q. Quiroga, Y. Ben-Shaul, B. Pesaran, D. A. Wagenaar,
R. A. Andersen, “Comparison of unsupervised algorithms for on-line
and off-line spike sorting,” in Proceedings of the Annual Meeting Soc.
for Neurosci., 2002.

[23] A. Zviagintsev, Y. Perelman, and R. Ginosar, “Low-power architectures
for spike sorting,” in International IEEE EMBS Conference on Neural
Engineering., 2005, pp. 162–165.

[24] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Statistics. Berkeley,
Calif.: University of California Press, 1967, pp. 281–297.

[25] U. Rutishauser, E. Schuman, A. Mamelak, “Online detection and sorting
of extracellularly recorded action potentials in human medial temporal
lobe recordings, in vivo,” Journal of Neuroscience Methods, vol. 154,
pp. 204 – 224, 2006.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

[26] C. J. V. Rijsbergen, Information Retrieval, 2nd ed. Newton, MA, USA:
Butterworth-Heinemann, 1979.

[27] Xilinx, “Spartan-6 FPGA configurable logic block user guide,” 2010.
[28] J. Dragas, D. Jckel, A. Hierlemann, and F. Franke, “Complexity opti-

mization and high-throughput low-latency hardware implementation of a
multi-electrode spike-sorting algorithm,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 23, no. 2, pp. 149–158,
2015.

[29] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh et al., “Freepdk:
An open-source variation-aware design kit,” in Microelectronic Systems
Education, 2007. MSE’07. IEEE International Conference on. IEEE,
2007, pp. 173–174.

[30] F. Chen, A. P. Chandrakasan, and V. M. Stojanovic, “Design and
analysis of a hardware-efficient compressed sensing architecture for data
compression in wireless sensors,” IEEE Journal of Solid-State Circuits,
vol. 47, no. 3, pp. 744–756, 2012.

[31] Cambridge Electronic Design Limited, “Spike 2 version 7 manual,”
http://www.ced.co.uk/img/Spike7.pdf, 2012.

[32] Plexon Inc., “Plexon offline spike sorter manual, ch. 5.6.2,” https://
plexon.com/wp-content/uploads/2017/06/Offline-Sorter-v3-Manual.pdf,
2009.

[33] D. H. Friedman, Detection of signals by template matching. Johns
Hopkins University Press, 1969.

[34] S. Kim and J. McNames, “Automatic spike detection based on adap-
tive template matching for extracellular neural recordings,” Journal of
neuroscience methods, vol. 165, no. 2, pp. 165–174, 2007.

[35] F. Franke, R. Q. Quiroga, A. Hierlemann, and K. Obermayer, “Bayes op-
timal template matching for spike sorting–combining fisher discriminant
analysis with optimal filtering,” Journal of computational neuroscience,
vol. 38, no. 3, pp. 439–459, 2015.

[36] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of eugenics, vol. 7, no. 2, pp. 179–188, 1936.

Daniel Valencia is a Research Assistant working in
the VLSI Design and Test Laboratory in the Depart-
ment of Electrical and Computer Engineering at the
San Diego State University. His research interests
include field-programmable gate arrays, embedded
systems, and ultra-low power VLSI architectures for
neural signal processing.

Amirhossein Alimohammad is an Associate Pro-
fessor in the Electrical and Computer Engineering
Department at the San Diego State University. He
was the Co-Founder and Chief Technology Officer
of Ukalta Engineering in Edmonton, Canada, from
2009-2011. He was a Postdoctoral Fellow at the Uni-
versity of Alberta between 2007-2009. He obtained a
Ph.D. degree in Electrical and Computer Engineer-
ing from the University of Alberta in Canada and
a M.Sc. degree from the University of Tehran in
Iran. Before starting his Ph.D., he was a Hardware

Engineer at Get2Chip GmbH, a Research Fellow in the Institute of Micro-
electronics at the University of Ulm and Atmel Wireless in Germany. His
research interests include digital VLSI systems, reconfigurable architectures,
wireless communication circuits, and signal processing algorithms.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBCAS.2019.2907882

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

