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Abstract—This article presents an efficient design and imple-
mentation of a real-time spike sorting system using unsupervised
clustering. We utilize the online sorting (OSort) algorithm and
model it first in both floating-point and fixed-point numerical rep-
resentations to accurately assess the feasibility of our hardware
architecture and also reliably analyze the sorting accuracy. For
efficient hardware realization of OSort, we propose a modified
parallel OSort algorithm. By reducing the number of required
memory accesses, the number of computations performed for
the management and upkeep of cluster averages and cluster
merging is substantially reduced. By limiting the number of sup-
ported clusters per channel, the classification/clustering latency
is significantly reduced compared to the previously published
work, making the designed OSort system applicable for in-vivo
spike sorting. The proposed OSort hardware architecture utilizes
a novel memory configuration scheme to parallelize the OSort
algorithm, which allows us to avoid using relatively large memory
queues for storing detected spike waveforms and process them
concurrently to the spike cluster management. The characteristics
and implementation results of the designed OSort-based spike
sorting system on a Xilinx Artix-7 field-programmable gate array
(FPGA) are presented. The ASIC implementation of the designed
system is estimated to occupy 2.57 mm2 in a standard 32-nm
CMOS process. Post-layout power estimation shows that the
ASIC will dissipate 2.78 mW, while operating at 24 kHz.

I. INTRODUCTION

Single-unit recording allows neuro-scientists to study how
the neural activity of neurons is correlated with one another.
Due to the electrical activity of nearby neurons and ambient
noise, these accumulated electrical activities will be detected
by the recording electrodes. In principle, each neuron tends
to produce spikes, also known as action potentials (APs),
of a particular shape. The process of classifying the neural
activity of different neurons is referred to as spike sorting [1].
Spike sorting consists of four different processing steps: (i)
spike detection, (ii) spike alignment, (iii) feature extraction,
and (iv) clustering [2]. The neural signal from the sensing
electrode is first filtered (300 Hz – 3 kHz). Neural spike
waveforms are then detected from the accumulated neural
activities of neighboring neurons and noise. Some of the
most commonly employed detection methods are the absolute
value thresholding [3], the non-linear energy operator (NEO)
[4], or the discrete wavelet transform (DWT) algorithm [5].
These detected spikes are then aligned such that a prominent
spike feature will be at the same sample number to simplify
the feature extraction or clustering processes. The feature
extraction process reduces the dimensionality of each neural
waveform from P1 to P2, where P1 denotes the number of
samples used to represent the spike waveform and P2 denotes
the number of features extracted. When more discriminative

features are found, the spike waveforms can be distinguished
more easily. Some commonly employed feature extraction
techniques include principal components analysis (PCA) [6]
and the DWT [7]. Finally, clustering is the process in which
spikes are sorted into clusters of distinct spikes.

Conventionally, analog signals from neurons surrounding
electrodes were digitized and transmitted to an external com-
puting unit for subsequent off-line software processing. Possi-
ble neural recording configurations include a physical connec-
tion from electrodes to a workstation or wireless transmission
of neural recordings. While offline processing of recorded neu-
ral data allows researchers to utilize computationally-intensive,
but relatively accurate signal processing algorithms, real-time
processing is of vital importance for in-vivo operation of
brain-implantable devices. To minimize the processing latency,
it is crucial to avoid computationally daunting and power
hungry algorithms, such as PCA or DWT, which also incur
relatively large computational delay. Additionally, algorithms
that circumvent the feature extraction and clustering processes,
such as template-matching [8], may not be applicable as
they require prior spike waveform information, which may
or may not be available. Compressed sensing (CS) has been
recently used to reduce the wireless data rate requirement for
transmitting sampled neural signals [9] [10]. For example, the
compression rates achieved by the work in [9] ranges from 8
to 16 times, while the work in [10] achieves a compression
rate of 10 times. Although compressed sensing presents a
viable bandwidth reduction strategy, spike sorting offers a
more considerable data rate reduction, as only relevant spiking
activity is transmitted [11]. Assuming a 24 kHz sampling rate
with 16 bits per sample, each neural recording site generates a
raw data rate of 384 kbps. This data rate becomes prohibitively
large with modern recording configurations, where hundreds of
electrodes record neural signals. Assuming the typical spiking
rate of a neuron is 40 spikes per second [1], and utilizing
only a few bits (between 3 and 5) for representing the type
of spike detected, the output data-rate would range between
120 and 150 bps. Moreover, CS algorithms require signal
reconstruction to be performed after compressed data has been
received, which may incur additional processing latency. The
main goal of real-time spike sorting implementations is to
reduce the output sorting data rate while the latency between
spike detection and spike classification is minimized. This is
because inducing synaptic modification of neurons requires
applying stimulation within critical timing windows. For ex-
ample, stimulation within 20 ms before or after pre-synaptic
activation produces different kinds of synaptic modification
[12]. Thus, the classification/sorting latency is of vital concern
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in closed-loop, BCI applications. Moreover, a reduction in
resource utilization is desired toward the development of low-
power and area-constrained implantable devices. In this article,
we present modifications to the OSort algorithm to ensure
that the classification latency is reduced, which is crucial for
real-time spike sorting and closed-loop experiments. We also
present an efficient hardware architecture for the real-time
realization of OSort-based spike sorting. For efficient hardware
implementation of a real-time spike sorting system, we first
developed our proposed spike sorting system in both floating-
point and fixed-point numerical representations in MATLAB
using our custom-developed library of numerical operations
in MEX/C to carefully assess the feasibility of our hardware
architecture and also reliably analyze the sorting accuracy.
Then, we modify the original OSort algorithm to make it more
computationally efficient for real-time operation on detected
spikes. Then, the proposed spike sorting system is developed
using Verilog hardware description language (HDL). The
publicly available WaveClus [7] data-sets are used to verify
and quantify the sorting accuracy of the designed spike sorting
system.

The rest of this article is organized as follows. Section
II briefly reviews the conventional steps of spike sorting.
Various algorithms are discussed for performing different
steps of the spike sorting chain. Section III presents the
OSort algorithm and details our modifications to the algorithm
for real-time operation. Section IV discusses the hardware
architecture for efficient realization of the detection, alignment,
and the original and proposed parallel OSort algorithms.
Section V presents the system configuration and simulation
results of the designed parallel OSort algorithm performed
by the implemented spike sorting system. The characteristics
and implementation results of the parallel OSort clustering
system are presented in Section VI. Our designed OSort-
based spike sorting system is compared to several state-of-
the-art spike sorting realizations on both field-programmable
gate arrays (FPGAs) and ASIC. Finally, Section VII makes
some concluding remarks.

II. SPIKE SORTING SYSTEM

Fig. 1 shows the conventional process of spike sorting, con-
sisting of spike detection, spike alignment, feature extraction,
and clustering. The output of the spike sorting system is a
spike train indicating to which cluster each spike belongs to.
The spike train also gives timing information as to which and
when neuron’s fire.

A. Spike Detection

Spike detection is used to identify the presence of a neural
spike, also known as an action potential, from ambient noise.
Detection is performed in two steps: (i) Pre-emphasis of
the neural signal and (ii) thresholding of the pre-emphasized
signal. Pre-emphasis is defined as an operation performed
on the neural signal to prepare it for the thresholding step.
Various pre-emphasizing methods have been utilized for spike
detection, such as employing absolute value [3], NEO [4],
and DWT [5]. These methods compute the absolute value

of the input signal, the energy of the signal, or the wavelet
coefficients of the signal, respectively. In the second step of
detection, if the pre-emphasized signal crosses the threshold,
this is an indication that a spike has been detected. Because
the thresholding step utilized by the absolute value method is
not adaptive, it is not chosen for our spike detection scheme.
While both NEO and DWT-based detection algorithms utilize
adaptive thresholding via the probability of detection and
probability of false alarm, the DWT is significantly more
computationally-intensive. Therefore, we implement a NEO-
based spike detection scheme. The energy operator of the
instantaneous value of the input at time t, x(t), can be written
as:

ψ
(
x(t)

)
=

(
dx(t)

dt

)2

− x(t)
(
d2x(t)

dt2

)
, (1)

It can be shown that the output of NEO is proportional to the
product of the amplitude and frequency of the input signal.
For a discrete-time sequence x[n], NEO can be written as:

ψ
(
x[n]

)
= x2[n]− x[n+ 1]x[n− 1], (2)

where x[n] is a sample of the waveform at discrete time n.
The result is large only when the signal is both large in power
(i.e., x2[n]) and in frequency (i.e., x[n] is large while both
x[n+1] and x[n− 1] are small). Since a spike, by definition,
is characterized by localized high frequencies and an increase
in instantaneous energy, this method is preferred over methods
that only consider an increase in signal energy or amplitude.

For thresholding, the threshold can be automatically set to
a scaled version of the mean of the recorded signal as:

Thr =
C

N

N∑
n=1

ψ
(
x[n]

)
, (3)

where N denotes the number of samples in the signal and the
scaling factor C can be chosen initially by experiment as a
constant (e.g., 8). The value of C will then be increased if PFA

< 0.3 and PD > 0.7 where PFA and PD denote the probability
of false alarm, and probability of detection, respectively. Our
simulation results verify that using the NEO algorithm, at
least 98% of simulated neural spikes, developed as part of
Wave Clus software [7], which is a well-known and widely
available unsupervised spike sorting program developed at the
University of Leicester, can be detected.

B. Spike Alignment

Because all spikes are compared by some common features
after the feature extraction step, it is important that the
feature extraction process produces similar features for similar
spike waveforms. To aid the feature extraction process, spike
alignment is performed, such that detected spikes are aligned
to a common metric. Some of the commonly employed align-
ment metrics are maximum amplitude, maximum absolute
amplitude, and maximum slope [2]. In each of these alignment
schemes, the detected spikes are aligned such that the spike
waveforms have the maximum amplitude, the maximum abso-
lute amplitude (positive or negative), and the maximum slope
are all at the same aligned spike waveform sample number,
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Fig. 1: The conventional off-line spike sorting process.
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Fig. 2: (a) Flowchart of the original OSort algorithm; and (b) the finite state machine for the real-time realization of OSort.

respectively. Depending on the pre-emphasis method utilized,
other alignment techniques can be employed as well, such
as alignment to maximum energy for use with NEO-based
detectors.

C. Feature Extraction

Once spikes are detected and aligned, feature extraction is
applied to extract a set of spike features that yield the best
discrimination between spikes of different shapes. In general,
the more discriminative features are used, the better the ability
to distinguish spike waveforms. For example, if λ features
are extracted and stored for each detected spike, the spike
waveforms can therefore be represented in a λ-dimensional
space. Fig. 1 shows the three features in a 3-dimensional space.
The key challenge is to select the minimal set of features that
yields the best discrimination.

One of the most commonly used feature extraction and
dimensionality reduction methods is PCA [6]. PCA gives an
ordered set of orthogonal vectors that captures the directions
of the largest variations in the data. A waveform is represented
as a linear combination of its principal components. The
dimensionality reduction is achieved by going from an M -
dimensional space to a K-dimensional space, with K �
M (typically, K equals to 2 or 3). Using only the first K

components can account for most of the energy in the data
and their scores can be used as an input to the clustering
algorithm. During the off-line parameter estimation, PCA is
performed on all detected spikes to create a subspace of
maximum variance, which can be used to extract common
features among spikes. The DWT has also found an application
in feature extraction [7]. The output coefficients of the DWT,
which describe both the time and frequency domains, can
be used as features for clustering. In addition to PCA and
DWT, the discrete derivatives (DD) technique has also been
used for feature extraction [13]. It computes the slope at each
sample point of the spike and can be considered as a simplified
DWT. The integral transform (IT) [14] has also been used for
feature extraction, where the discriminating features are the
areas under the positive and negative portions of the AP. The
appeal of the IT is its inherent reduction to only two features
per spike.

D. Clustering

Clustering is used to ultimately classify neural spikes into
different groups and recreate the spike train. Traditional spike
sorting schemes would often involve forming the clusters by
hand on pre-recorded data [2]. On-line techniques have the
ability to classify spikes in real-time [15], however, prior
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knowledge of the spike waveforms is required. Sorting based
on the predetermined shapes of spikes may not be sufficiently
accurate since spikes that do not appear often during the
learning phase, would either be misclassified or simply not be
classified during the online sorting process. Rutishauser et al.
[16] developed the OSort algorithm to overcome the barrier of
sparsely firing neurons during the learning phase of traditional
spike sorting methods. For the template-matching approach,
the generation of templates is also a research topic of interest.
In [17], the separability of clusters is enhanced by making
relatively small changes to the mean template waveforms, thus
improving the accuracy of sorting by imposing additional pre-
processing without affecting the computational complexity of
the algorithm.

While feature extraction based on PCA, DWT, and DD
require dimensionality reduction to facilitate the clustering
process, OSort can perform clustering without the need for
feature extraction. In OSort, the spike waveform itself can be
considered as the feature of interest. That is, the incoming
spike is stored in its entirety and can be considered as being
represented in an R-dimensional space, where R denotes the
number of samples in a spike waveform. The actual number
of samples depends on the sampling frequency. Employing
the commonly used 24-kHz sampling frequency, the WaveClus
waveforms consist of 64-samples, which correlates to 2.7 ms
of time. Because OSort stores each spike waveform in its
entirety, spikes are directly compared to one another with
the Euclidean distance metric. Because the Euclidean distance
measures the linear distance between the spike waveform
samples, it must be ensured that each waveform is aligned
to a common feature. For simple implementation, spikes
are aligned to the point of maximum amplitude such that
all detected spikes share the same alignment point. Since
the alignment point contains the maximum amplitude, the
waveforms are distinguished by their shapes. If alignment is
not performed, a lateral shift of either waveforms would cause
the distance metric to return a significantly greater and thus
incorrect value.

III. THE MODIFIED PARALLEL OSORT ALGORITHM

The flowchart of the original OSort algorithm is shown in
Fig. 2(a). The bandpass filtered neural signal is first applied
to the spike detection module. Once a spike is detected,
the distances between the new spike and all of the cluster
averages are computed. If d < TC , the spike is assigned to
the cluster with minimum Euclidean distance, where d denotes
the minimum distance between the detected spike and the
stored cluster averages, and TC denotes the cluster assignment
threshold. Otherwise, a new cluster is created. When the new
spike is assigned to a cluster, the mean waveform of the
cluster is updated. Finally, the clusters are compared to one
another to verify that indeed their distances are greater than
or equal to a merging threshold TM . If clusters are too close
in distance, they will be merged together and the cluster
distances are updated. The cluster assignment threshold TC
and the cluster merging threshold TM are approximated as
TC = TM = T , where T denotes the standard deviation of

the filtered neural input signal [16]. While it is commonplace
to normalize distance metrics with the number of data-points,
it is computationally more efficient to multiply the threshold
T [16]. As presented in [16], the optimal threshold for OSort
sorting TC and cluster merging TM are computed separately.
It is shown that the distances between an incoming spike and
the spike follows a chi-squared χ2 distribution. Therefore,
the clustering threshold TC can be calculated as the distance
for which all points in a waveform belong to a cluster with
probability 1 − α, where a is usually given as 5%. The
cluster merging threshold TM is computed as the number of
standard deviations that clusters need to be apart before they
are considered the same cluster.

From the hardware perspective, there are two important
considerations when designing digital circuits for implement-
ing the OSort algorithm. The first is the potentially infinite
memory requirement. Because the algorithm has the ability
to create new clusters, an efficient approach must be utilized
to manage the creation of new clusters given a finite memory
storage. The second challenge is designing the system for real-
time operation. The original OSort flowchart in Fig. 2(a) shows
that cluster averaging and cluster merging occur sequentially
after a spike is assigned to a cluster. In the traditional offline
processing, this can be readily done as all data recordings
are accessible. In real-time operation, however, the OSort
algorithm should not stop accepting incoming detected spikes
while computing new cluster averages as well as checking
for cluster merging. One solution is to utilize a queue for
storing all newly detected spikes, however, implementing a
queue would consume a relatively large amount of silicon
area. Alternatively, we suggest to perform cluster merging and
averaging concurrently to comparing incoming spikes to the
existing clusters.

Fig. 2(b) shows the finite state machine (FSM) of the pro-
posed parallelized OSort algorithm. The algorithm is divided
into three stages: the Assign Stage, the Averaging Stage, and the
Merging Check Stage. The Assign Stage is responsible for reading
cluster average spike waveforms from the spike memory,
comparing the minimum distance to the clustering threshold,
and then assigning the new spike to an existing cluster or
to a new one. The Averaging Stage reads the spike waveforms
assigned to cluster memory for either cluster averaging or
cluster merging. Finally, the Merging Check Stage compares
the minimum distance between the newly averaged cluster
spike waveform and all other existing cluster average spike
waveforms. We assume that the incoming spikes to the sorting
system have already been filtered. The data is processed by
the detection and alignment modules, which produce a spike
of p samples in length and is aligned to some particular
feature, such as maximum energy or maximum amplitude. The
distances between the incoming spike and all existing cluster
average spikes are computed. The minimum distance dmin is
compared to the threshold τ = pσ2

r , where σr denotes the
standard deviation of the filtered input signal [16]. If dmin ≤ τ ,
then the incoming spike will be assigned to the closest cluster.
Otherwise, a new cluster will be created. If the M–th spike is
assigned to an existing cluster, the cluster will be averaged. M
can be chosen to be any particular number, but for hardware
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Fig. 3: Real-time spike sorting system.

implementation, it is selected as a power of 2, to replace
division with an arithmetic right shift operation.

A key step in the OSort clustering process is computing
the average of the cluster when a new spike is assigned to
a cluster. Consider a spike cluster as a spherical object in
a 3-dimensional xyz-space. The cluster average can then be
considered as the average of all spikes within that sphere.
When a new spike is added to a given cluster, the further
away it is from other spikes in that cluster, the bigger an
impact it will have on the cluster average. This would then
cause a considerable change on the average dimensions of
the sphere and hence, changing the average itself. A cluster
may grow to the point in which it intersects a different
cluster. Therefore, every time the cluster average is updated,
the distances between the newly computed average and other
existing cluster averages are calculated to ensure that the
clusters themselves remain different enough to one another.
If the minimum distance between the newly averaged cluster
and any other cluster is less than τ , the average of those
two particular clusters will be computed and assigned to one
of those two clusters, which implements the cluster merging
operation. To implement cluster averaging and cluster merging
efficiently, two modifications are applied to the original OSort
algorithm: (i) a cluster is averaged only if it was assigned
its M -th spike. This allows us to avoid using complex com-
putational resources, such as division units; and (ii) when a
cluster average is updated, instead of exhaustively comparing
all cluster averages to each other, only the newly updated
cluster average is compared to all other clusters to check for
potential merging.

To quantify the achieved relative performance increase
resulting from the changes applied to the original OSort
algorithm, the number of memory accesses (read and write) are
measured. For a fair comparison, it is assumed that the original
OSort algorithm has an upper bound on the number of clusters
that can be supported, as well as the number of waveforms
stored in each cluster. For every newly detected and aligned
spike, both the original and modified OSort algorithms would
require C clock cycles to read the average waveforms for the
C clusters. The distance computation between two R-sample
waveforms requires 2 × R operations (one addition and one
multiplication per sample of the two waveforms). One memory
access is required for assigning the spike to a cluster. Because
the original OSort algorithm performs the averaging of a
cluster for every spike assignment, the number of operations
required for averaging M waveforms is thus (M−1)×(R+1).

Our modified OSort algorithm, however, performs the cluster
averaging only on the M -th spike assignment, which requires
only R×(M−1)+1 operations. Moreover, the original OSort
algorithm requires C×(C−1) memory accesses for assessing
potential cluster mergers. In our proposed modification, the
potential cluster mergers are only assessed for clusters that
have just recently changed (i.e., their averages have been
changed and merging may be required), which requires only
(M − 1) memory accesses. Also, note that each merging
assessment memory access requires 2×R numerical operations
to compute the distances between the spike waveforms. It
is clear that our proposed modified OSort algorithm requires
significantly fewer numerical operations and memory accesses
compared to the original OSort algorithm.

IV. ARCHITECTURE OF THE REAL-TIME SPIKE SORTING
SYSTEM HARDWARE

The processing steps of our designed and implemented real-
time spike sorting system is shown in Fig. 3. Spikes are
first detected from ambient noise picked up by the recording
electrodes. After detecting a spike, the new spike is aligned
to the point of maximum amplitude MA. After alignment, the
spike is passed to the OSort-based clustering module, which
will assign the new spike to an existing cluster or a new cluster.
Then, the clustering unit will output the cluster ID of the
cluster to which the spike was assigned and hence, generating
the output spike train.

A. Spike Detection Unit

Fig. 4 shows the architecture of the designed and imple-
mented NEO-based spike detection unit. The input signal is
shifted into the NEO Shift Reg, which is used to delay the input
signal accordingly, to compute the energy of the signal at any
given sample x[n]. The energy output ψ[n] is then compared
to the energy threshold τd. If the energy output matches or
exceeds the given threshold value, the comparator will assert
a “1” at the output, which indicates to the alignment unit that
a spike is present in its respective buffer. The threshold value
τd can be specified at the system level to a desired value . The
NEO scaling factor C in (3) is estimated via the PFA and PD,
which are computed during the offline parameter estimation
phase. This allows the end-user to fine-tune the threshold value
used for spike detection.
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B. Spike Alignment Unit

To calculate the Euclidean distances among spikes accu-
rately, spikes must be aligned prior to comparison. Aligning
to the maximum amplitude is commonly used, as it is both
computationally-simple and it also allows the clustering’s
Euclidean distance computation unit to readily differentiate
spikes from one another. Because the stored cluster averages
are also aligned to maximum amplitude, this requires the
detected spikes to be aligned to the same metric to increase
the consistency of the Euclidean distance unit.

As shown in Fig. 5, the spike alignment unit consists of two
main buffers: the Master Buffer shift register, which receives
new values of the input signal every clock cycle, and the MBA
register, which is a parallel-in parallel-out register that copies
the values stored in the Master Buffer when the Spike Present
input signal is asserted by the spike detection unit. The Spike
Present signal is delayed using an N -bit shift register to allow
the detected spike to buffer more input data for a more accurate
alignment. The Control Unit will assert the LOAD signal high to
copy the contents of Master Buffer to MBA. The Control Unit then
begins reading values from the MBA by controlling the select
line IDX accordingly. The first value read from MBA is stored in
the maximum value register MR by asserting the register enable
signal MVU high. During all subsequent reads, the value read
from the MBA will be compared to the value currently stored in
MR, with MR being updated accordingly. The Control Unit also
stores the index of the maximum value. The alignment point,
which can be specified by the user as a parameter, is used
such that the maximum amplitude of each spike lies at the
chosen alignment point index. This helps prevent erroneous
comparisons in the Euclidean distance unit that would occur
from temporal shifts in the waveforms, which can induce a
significant distance metric error.

Disregarding the Spike Present buffering latency, that is, the
time of actual spike occurrence delayed by the buffers, the
alignment unit takes 17 clock cycles to find the maximum
value within the master buffer. The latency is directly related
to the number of samples in a spike waveform, the chosen
alignment point, and the size M of the master buffer and
the MBA. The alignment unit begins reading values from the
alignment point index to max address, which is computed as
M − (NSS − AP ), where M , NSS, and AP denote the
size of the Master Buffer , the number of samples in a spike
waveform, and the chosen alignment point, respectively. For
64-sample spike waveforms, a buffer size of M = 80, and
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Fig. 5: Architecture of the spike alignment unit.

an alignment point of 23, the maximum value search spans
17 values starting from the alignment point. Assuming a 24
kHz sampling rate, the search spans 0.7 ms of signal time.
Then the maximum index is used to part select the parallel
output of MBA, shown by the [ ] block in Fig. 5, such that the
maximum value is placed at the alignment point. The Control
Unit also asserts an output flag to notify the OSort module that
an aligned spike is ready for clustering.

One challenge during spike detection and alignment is due
to the overlapping of spikes, i.e., when more than one spike
resides in the detection window. While the refractory period
of a neuron will prevent same-neuron overlapping, different
neurons can fire at around the same time. Thus, the input to
the system is the summation of signals at the electrode. In the
worst case, our system will assign the overlapped spikes to its
own cluster.

C. Parallel OSort Hardware Architecture

Fig. 6 shows the top-level block diagram of the designed
OSort module. The primary inputs to the module are a Spike
Ready input flag, which is asserted by the preceding spike
alignment module to indicate that a spike is ready to be
processed, and Spike In which is received in parallel from the
alignment module. Other inputs to the module are the cluster
distance threshold ds and the cluster merging threshold dm.
The DS register holds the input spike for processing and is
enabled via the Spike Ready input flag. The DST , MIN, and
COMP units are responsible for computing distances, finding
the minimum values, and comparing distances, respectively.
The finite state machine Assign FSM reads cluster averages
from the cluster memory via the Assign raddr port. It is also
responsible for assigning the new spike to either an existing or
to a new cluster. The Assign FSM handles when to enable the
MIN unit as well as monitoring the output of the COMP unit
for cluster assignment. For functional verification, the Assign
FSM also keeps track of how many spikes have been assigned
to each cluster.

The distance computation unit DST consists of p difference-
squaring units and a pipelined adder tree of p − 1 two-input
adders in log2(p) stages to calculate the squared Euclidean
distance between an input spike and an average spike from
a particular cluster. After the Assign FSM has read the cluster
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averages, the MIN unit is enabled and will find the minimum
distance and its associated cluster average. The COMP unit
will then assert a flag if the minimum distance is less than the
stored threshold d. If the flag is not asserted, then the spike is
assigned to the cluster memory as a new cluster. If the flag is
asserted, the Assign FSM will assign the new spike to the cluster
that produced the minimum distance. The Assign FSM sets the
cluster memory’s write enable and write address via the Assign
w sig port. Additionally, if the M–th spike was assigned to a
cluster, the Assign FSM triggers the cluster memory to perform
the cluster averaging via the S Avg port. Finally, regardless
of whether the spike is assigned to an existing cluster or a
new cluster, the Assign FSM generates the cluster identifier to
generate the spike train output.

The block diagram of the cluster memory is shown in Fig. 7.
The cluster memory not only stores clusters and their assigned
spikes, it also has the ability to perform cluster averaging and
merging. The Assign FSM reads cluster averages for comparing
the incoming spikes to the averages. The cluster memory
module consists of two main memory units: the Master RAM
and the Average RAM. The cluster memory module stores the
clusters and cluster average waveforms, which are maintained
by performing cluster averaging and cluster merging. The
Master RAM is responsible for storing the clusters; that is,
storing all cluster averages and their assigned spikes. The
Average RAM is responsible for storing only the cluster average
waveforms. The cluster averages can come from either the
Master RAM or the Average RAM, wherein lies a novel memory
configuration scheme. By separating the averaging process
from the Master RAM, the system is readily available to process
incoming spikes into the Master RAM regardless of the current
operational status of the averaging unit. This is due to the
fact that the Master RAM also contains the average spike
information, thus allowing the cluster management portion of
the OSort algorithm to be parallelized alongside the incoming
spike processing/assignment. A multiplexer is used to control
which of the two memory units the Assign FSM reads from for
incoming spike comparison.

To perform the distance comparison between clusters, the
cluster memory module has a dedicated Distance Pipeline Unit
DPU, a Minimum Distance Unit MDU, and a Distance Comparator Unit
DCU. These units are all controlled by the Clustering Control Unit
CCU. For computing the cluster averages, the Cluster Averager
consists of p signed accumulators with a variable shifter at
the output of each accumulator. The variable shifter is used
to implement either cluster averaging (computing the new

Master
RAM

Avg.
RAM

Spike In
0

1
Cluster

Averager
ACU

1

0

Avg.
Out

New Avg.

New Avg.

DPU

MDU DCU

CCU

Cluster Merging

Cluster Averaging

Fig. 7: Top-level block diagram of the cluster memory module.

average for 2n deep clusters) by right shifting n times, or
to implement cluster merging (computing the average of two
clusters) by right shifting once. The Averaging Control Unit ACU
controls the averaging of spikes, which includes reading the
Master RAM and starting the check for potential cluster merging
(Cluster Merging Stage).

The cluster storage for the Master RAM is organized as shown
in Fig. 8. Each spike cluster is alloted M rows of memory,
where each row stores a spike waveform. The first row of
a cluster is designated as the cluster average. When a spike
is first assigned to an “empty” cluster, the assigned spike
becomes the representative spike for that particular cluster,
i.e., the cluster average. When a cluster is later averaged,
the average spike waveform is again written to the first row
of that particular cluster. The clusters are separated in this
way to facilitate memory I/O via two addressing indices: the
clusterID and the cellID. The clusterID is a log2 (K)–bit identifier,
where K denotes the number of total clusters supported by the
hardware, and is used to index the clusters themselves. The
cellID is a log2 (M)–bit identifier, used in conjunction with
the clusterID, to access a particular spike waveform stored in a
particular cluster. Thus, the memory’s read/write address is a
concatenation of the two indices

[
clusterID.cellID

]
.
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Fig. 8: Master RAM memory organization.

The ACU, CCU, and Assign FSM units work in unison to
parallelize the OSort algorithm. The first operating stage is the
Assign Stage. The Assign FSM reads average waveforms from
the cluster memory and then assigns incoming spikes into
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different clusters via the clusterID and/or cellID cluster indices.
The Assign FSM keeps track of the next empty cellID for each
cluster. When a spike is assigned to a particular cluster, the
cellID for that cluster is incremented, such that the next spike
assigned to that cluster has a valid memory address. If the
increment causes an overflow (i.e. the increment returns the
cellID to zero), this indicates that the cluster is now full, and
the Assign FSM starts the averaging stage. The Assign FSM is
now available to process another incoming spike.

During the Averaging Stage, the ACU reads the clusterID of
the overflow from the Assign FSM and begins reading the spike
waveforms stored in that cluster into the averaging unit. Once
the new average is computed and written into the appropriate
clusterID addresses in both the master and average RAMs, the
ACU instructs the CCU to compare the newly computed average
to other existing cluster averages for potential cluster merging.
This initiates the third operating stage, which is the Merging
Check Stage. The CCU reads cluster average waveforms and
compares the distances between the newly averaged waveform
and existing cluster averages. Once the minimum distance is
computed, the CCU checks the value of the comparator’s flag.
If the flag is asserted, this indicates that two clusters must be
merged. As the CCU does not have control over the averager,
the CCU instructs the ACU which two clusters require merging.
The design uses a merge down scheme which follows that the
higher index is always merged into the lower index. As such,
OSort will converge to more commonly occurring clusters
located in the lower indices. The Assign FSM keeps track of
the number of cluster merges and during distance computation
in the Assign Stage, the Assign FSM will only compare the
distance between the new spike and clusterIDs 1 to K −Nm,
where K denotes the number of supported clusters and Nm

denotes the number of cluster merges. This avoids comparing
to waveforms that rarely appear multiple times in the data, thus
reducing the number of required comparisons. While OSort
converges to the most commonly occuring spike waveforms,
created transient clusters are handled in an efficient manner.
Transient clusters will populate the higher indeces of the
cluster memory, while, due to the merge down scheme, the true
and accurate clusters of commonly occurring spike waveforms
will populate the lower indeces of cluster memory. Transient
clusters that are created due to mis-shapen or false-positive
detected spikes will be overwritten by new transient clusters to
conserve the memory. The more commonly occurring clusters
are safely maintained in the lower indeces of the cluster
memory. The convergence latency can be defined as the time
it takes for OSort to accurately converge upon a couple
of accurate cluster representations of the more commonly
occurring waveforms. Because OSort will only update the
cluster averages upon newly detected spikes, the convergence
latency is not a deterministic value. Although the convergence
latency is not deterministic and is also dataset dependent, the
convergence latency can be estimated approximately as the
duration of time before OSort no longer merges clusters.

For real-time spike sorting, the latency between actual spike
appearance and classification is of vital importance. Because
the Assign Stage has access to average waveforms, regardless of
the status of the Averaging and Merge Check stages, the sorting

latency only depends on the Assign Stage, in particular the
number of currently populated clusters. Naturally, due to the
detection buffer and alignment scheme, there will be some
processing prior to OSort which will incur additional latency.
After the initialization of threshold parameters, all clusters
are seen as empty by the Assign Stage and skips any distance
computation and comparison, thus OSort has a latency of one
clock cycle for the first spike. During subsequent operation,
the sorting latency can be calculated as 10+(A−Nm), where
A denotes the number of assigned cluster averages and Nm

denotes the number of cluster merges. Because clusters that
are merged together populate lower-indexed memory locations,
the more commonly appearing spike waveforms will gravitate
toward the lowest 3-6 clusters, which indicates that the Assign
Stage does not have to read the last Nm cluster averages and
saves clock cycles by doing so. Ignoring the detection latency,
the OSort module running at the sampling frequency of 24
kHz has a sorting latency ranging from 0.04 ms to 1.3 ms.
In practical applications, it is recommended that OSort be run
at a frequency much higher than the sampling frequency, as
latency on the order of milliseconds may not be acceptable
for real-time experiments.

V. SPIKE SORTING SYSTEM CONFIGURATION AND
SIMULATION RESULTS

The top-level block diagram of the parallelized OSort-
based spike sorting system is shown in Fig. 9. The inputs
to the system are the neural signal, the spike threshold for
NEO-based spike detection, and the OSort maximum distance
threshold. The detection and maximum distance thresholds can
be changed in real-time during the system operation for fine-
tuning.

Detect

Neural Input

Spike Threshold

τd 
Align

Osort
Clustering

Unit

Max Dist.

Cluster ID

Assign Flag

Fig. 9: The top-level block diagram of the parallelized OSort-
based spike sorting system.

The dataset used for testing is the publicly available
Wave Clus dataset [7]. The dataset consists of simulated spike
waveforms and is widely used as a benchmark for quantifying
the performance of different spike sorting algorithms due to its
ground truth information. We have performed testing using the
Easy1 noise01, Easy2 noise005, and the Difficult1 noise005
datasets [7]. The datasets consist of spike waveforms from
three different spike classes, along with background noise
caused by distant spikes with signal-to-noise-ratios of 0.1 and
0.05, respectively. As presented in [7], the simulated datasets
offer three distinct spikes with a Poisson distribution and a
mean firing rate of 20 Hz. A refractory rate of 2 ms is applied
to each spike class such that spiking cannot occur within that
time frame. The noise added to the waveform is constructed
from spike waveforms themselves, which renders the spike
sorting more challenging, as the noise demonstrates a similar
power spectrum to the actual spike data itself. The input to the
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(a) (b)

(c) (d)

Fig. 10: (a) The floating-point software simulation results for the Easy1 Noise01 dataset; (b) the floating-point software
simulation results for the Difficult1 Noise005 dataset; (c) the hardware simulation results for the Easy1 Noise01 dataset; and
(d) the hardware simulation results for the Difficult1 Noise005 dataset for varying numbers of supported clusters and cluster
depths.

system is represented using the (WI,WF ) fixed-point numerical
format, where WI and WF denote the number of bits allocated
for the integer and fractional portions, respectively. The data
is bandpass filtered (300 Hz – 3000 Hz) in MATLAB and
then passed to our spike sorting system in (5,11) fixed-point
format. For simulation and verification, the OSort module is
configured to support 20 clusters with depths of 16 spike
waveforms each stored in one row of the cluster memory. Note
that all of these parameters are user-configurable during design
elaboration. The distance computation units and averaging
units are configured to match the number of samples in a
spike waveform (64 in our case) to minimize the processing
latency.

For an efficient in-vivo realization, it is important to estimate
the number of clusters to support and to estimate the depth of
the clusters for accurate sorting. For ASIC implementation,
the number of supported clusters and depth of each cluster is
fixed after implementation. We have performed an exhaustive
simulation for the two given datasets while varying the max-
imum number of supported clusters and cluster depths. Figs.
10.a – 10.d show the floating-point and hardware simulation
results for both datasets for a varying number of maximum
clusters and varying cluster depths. For the Easy1 dataset, the
NEO detection threshold scalar is set to C = 5.6, which results
in a spike detection accuracy of 97% and the OSort sorting
accuracies of 94%, 88%, and 88% for the three spike classes
specified in the dataset, respectively. For the Easy2 dataset,
the NEO detection scalar is set to C = 4.04 and results to a
98% detection accuracy. The OSort sorting accuracies for the
Easy2 dataset are 96%, 94%, and 94% for the three distinct
spike classes. For the Difficult1 dataset, the NEO detection

threshold scalar is set to C = 1.29, which results in 97% spike
detection accuracy. The OSort clustering accuracies are 85%,
85%, and 83% for the three distinct spike classes specified in
the dataset, respectively. The clustering accuracy, also referred
to as the sorting accuracy, is defined as the number of spikes
assigned to the correct cluster divided by the number of spikes
in the ground truth dataset that are associated with that cluster.
One can see that the minimum number of supported clusters
for accurate sorting performance is 20, while the minimum
cluster depth is 16. It is estimated that this number of clusters
and depth configuration is sufficient for accurate spike sorting.

We have quantified our system’s performance with the com-
monly employed F-Score metric [18]. The F-score expresses
the mean precision and sensitivity of the system as:

F =
2TP

2TP + FP + FN
,

where TP , FP , and FN denote the number of true positives, the
number of false positives, and the number of false negatives,
respectively. True positives denote spikes that have been
detected and accurately classified by the system. True positive
spikes have been verified against the ground truth dataset by
matching the shape of the waveform as well as the time that
the spike has occurred. False positives are defined as spikes
that have been detected and classified by the system, but do not
exist in the dataset. False negatives are defined as spikes that
exist in the dataset, but are not detected and classified by the
system. In testing the Easy1, Easy2, and Difficult1 datasets,
our designed system achieves F-scores of 0.9493, 0.9694, and
0.9150, respectively.

Fig. 11 shows the generated spike train for parallel OSort
clustering for the Difficult1 dataset. The x-axis shows the
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Fig. 11: Generated spike train for parallel OSort clustering
with annotated cluster merging for the Difficult1 dataset.

time units in microseconds and the y-axis shows the spike
classification (or class). Each dot on the plot represents the
classification that OSort assigns to detected spike waveforms.
The instances of cluster merging are also annotated. It can be
seen that all merge instances merge toward the three most
commonly occuring waveforms, clusters 1, 2, and 4. The
reason that the assignment to cluster 20 (the final cluster)
appears nearly fixed is because it serves as the holding point
for the transient clusters that do not match existing average
waveforms.

VI. FPGA AND ASIC IMPLEMENTATION RESULTS

Table I gives the characteristics and implementation results
of our developed OSort-based spike sorting system along with
those of the previously published work on FPGAs. Note that
the variance of the results given in Table I is not primarily
due to the differences among various FPGA devices. Different
FPGA families are fabricated using different integrated circuit
technologies and are optimized for various design constraints.
For example, Xilinx Virtex FPGAs are generally intended
for optimized performance (stronger drivers, more on-chip
dedicated resources, etc.), while Xilinx Spartan FPGAs are
optimized for lower power consumption and lower cost. For
a fair comparison, we have synthesized our proposed OSort
architecture on the same target devices as those used by the
other previously published work, when able. Schäffer et. al.
[19] presented an OSort-based clustering module. For a fair
comparison, we have synthesized our design using the same
target FPGA. While the number of registers, lookup-tables
(LUTs), and block RAMs (BRAMs) used by our design are
smaller, our design utilizes slightly more DSP48 dedicated
multiplication units, which are required to parallelize the OSort
algorithm. The work in [19] reports a maximum sorting latency
of 18127 clock cycles, while our design will cluster and
classify a spike with a maximum latency of 32 clock cycles.

For both implementations, the latency is defined as the number
of clock cycles for a spike to be clustered and classified from
when it appears at the input of the OSort module. The design
in [20] presents a spike sorting system based on PNN. They
utilize a customized floating-point numerical representation
consisting of 1 sign bit, 8 exponent bits, and 7 fraction
bits. We have implemented our design on the same FPGA
in fixed-point format with the same wordlength. While our
design requires more resources, our design achieves a higher
maximum clock frequency while clustering spikes with a
significantly smaller latency. Note that the decrease in latency
is not due to the higher maximum operating frequency, but
because of arrays of processing elements used to compute
spikes averages and distances between spikes in parallel, which
significantly decreases computation time. For example, if the
maximum frequency of our design was also 100 MHz, our
sorting latency would be 0.32 µs, which is 560 times shorter
than that of [19]. The work in [21] presents a real-time spike
sorting system that uses Hebbian learning to implement PCA
for projecting input spikes to features of interest. They present
results for 16-bit wordlength, as well as modeling their designs
using MATLAB’s fixed-point toolbox, but do not report if any
bits are allocated for the fractional portion of signals. Their
target device is a Xilinx Spartan-6 FPGA and their resource
utilization was reported based on the reconfigurable slices.
We also implemented our designs using the same wordlength
on the same target device. Note that the design in [21] only
reports the implementation results of the Hebbian Eigenfilter
hardware. Therefore, for a fair comparison, we have chosen
to compare their Eigenfilter hardware to our implemented
OSort clustering hardware, as both hardware units classify
the detected spikes accordingly. We have estimated their
register and LUT usage using the conversion formula in [25],
which contains information about the Spartan–6 FPGA device
family. It is shown that our OSort implementation uses fewer
registers and BRAMs for the classification of spikes. The
authors of [21] have not reported their operating frequency,
nevertheless their reported projection time is 3 times longer
than our clustering latency. Their spike sorting accuracy is
95% and 87% when sorting spikes from three and four
neurons, respectively.

For a comparative analysis, we have also implemented
a template matching-based spike sorting system [22] on
a Xilinx Virtex-6 FPGA. Template matching avoids the
computationally-daunting tasks of feature extraction and on-
line clustering by performing them offline on a workstation.
Pre-processing of neural recordings is used to estimate spike
detection thresholds as well as generate spike templates. The
templates are then utilized in a similar fashion to the cluster
averages as described in Section III. As given in Table I, while
the template matching-based design utilizes significantly fewer
reconfigurable resources, it requires pre-processing of neural
recordings for generating a set of template spikes. In contrast,
the OSort-based spike sorting system can actively compute
and maintain cluster averages without prior signal information.
Due to its parallel computation, the designed OSort-based
spike sorting system also clusters and classifies spikes in about
half the time required by the template matching-based system.
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TABLE I: The characteristics and implementation results of various spike sorting systems on FPGAs.

Work Algorithm Device WL.WF Regs. (%) LUTs. (%) BRAMs (%) DSP48s. (%) Max. Freq. Clustering Sorting
(MHz) Latency Accuracy

[19]* OSort Zynq-7000 16.0 12150 (11%) 14037 (16%) 102 (72%) 120 (54%) 101 179.4 µs –
Ours* OSort Zynq-7000 16.11 6103 (5.7%) 12701 (23.8%) 29 (20.7%) 128 (58.1%) 114 0.25 µs –
[20]** PNN Virtex-6 16.7 3936 (1%) 13776 (7%) 7 (1%) 54 (4%) 100 6.7 µs –
Ours OSort Virtex-6 16.11 8444 (2 %) 16472 (9 %) 29 (4 %) 130 (9 %) 123 0.25 µs 87%
[21]* Hebbian Spartan-6 16.0 ∼8904 (5%) ∼6678 (7%) 65 (24%) – – 0.96 µs 95%
Ours* OSort Spartan-6 16.11 6127 (3%) 14188 (15%) 43 (16%) 128 (71%) 105 0.30 µs 87%
Ours Template Virtex-6 16.11 4880 (1%) 6635 (3%) 0 (0%) 5 (0.6%) 122 0.55 µs 90%
[22] Matching
[23] BOTM Virtex-6 20.0 29000 (6%) 190000 (83%) 24 (6%) – – 2.65 ms –
[24] OSort Virtex-5 16.8 16245 (27%) 23567 (40%) 63 (25%) 29 (4%) 100 11.1 ms –
Ours OSort Virtex-6 16.11 8444 (2%) 16472 (9%) 29 (4%) 130 (9%) 123 0.26 µs 87%

*The authors of [19] and [21] present the FPGA implementation results for only the clustering and classification portions of their design, respectively. For
a fair comparison, we also use the FPGA implementation results of our OSort clustering module only.
**The authors in [20] utilize the floating-point number representation with 1 sign bit, 8 exponent bits, and WF fraction bits.

TABLE II: The ASIC characteristics and implementation results of different spike sorting systems.

Design Ours Ours [22] [26] [27] [28] [29] [30] [31] [32]
Algorithm OSort Template Feature OSort OSort Feature Feature BOTM Feature

Matching Extraction Extraction Extraction Extraction
Technology (nm) 32 45 90 65 45 45 130 40 65
Core voltage (V) 1.16 0.25 0.55 0.27 – 1.1 1.2 1.1 0.54

Operating frequency (kHz) 24 24 4000 480 56 960 160 500 3200

Area per channel (mm2) 2.57 0.30 0.06 0.07 0.07 2.7 0.023 0.0175 0.003
Power per channel (µW) 2.78 0.064 2 4.68 10.3 20 0.75 19 0.175

Average accuracy (%) 87 90 77 75 93 84.5 – 93 86
Data rate 1600× 3200× 11× 240× 278× 240× – – 257×
reduction

The design presented in [23] has implemented the Bayes
optimal template matching (BOTM) algorithm for spike sort-
ing on a Virtex-6 FPGA. While the maximum operating
frequency has not been reported, the sorting latency was stated
as 53 sampling cycles at a 20 kHz sampling rate. Our design
achieves a sorting latency of at most 32 clock cycles. If
both designs are operated at the sampling rate of 20 kHz,
the sorting latency of [23] and ours are 2.65 ms and 1.6
ms, respectively. The work in [24] presents an FPGA-based
spike-sorting accelerator employing the OSort algorithm. The
design in [24] is intended for high-speed data processing of
neural recordings on a workstation (offline), and the FPGA
communicates with the workstation via a PowerPC processor
on the interface board. The latency of 11 ms in Table. I is
assumed with 24 kHz sampling rate. This is the worst case
sorting latency, and correlates to 266 clock cycles. Our design
achieves a significant reduction in real-time sorting latency,
at only 32 clock cycles, which assuming a 24 kHz sampling
rate, is only 1.33 ms. The design in [33] presents an FPGA-
based, 128-channel spike sorting system, which utilizes OSort
as a learning phase for template generation. Unfortunately,
the resource utilization and the clustering latency of their
design have not been reported. Note that both work in [19]
and [24] present FPGA implementations of the original OSort
algorithm. Our proposed parallel OSort algorithm results in
reducing the number of utilized on-chip resources while signif-
icantly reducing the clustering latency. Similar to our template
matching-based design, the work in [34] presents the template
matching-based spike sorting system on a small Nano Igloo
FPGA. While the relative resource utilization of their system
is reported to be 98%, the utilization of registers, DSP48s,

block RAMs, etc. is not specified and therefore, the work in
[34] is not listed in Table I. Note that for a fair comparison
with the reported results in the previously published work,
the clustering latencies given in Table I refer to the OSort
hardware operating at its maximum frequency. The FPGA
implementation results are thus given as a benchmark and a
relative measure to compare our implementation with other
spike sorting realizations. Due to the parallelization of the
algorithm and the novel memory configuration structure, the
OSort module can be operated at the lower sampling frequency
fs of the neural signal, leading to a reduced power consump-
tion.

The following steps are taken to use our proposed OSort-
based spike sorting system in the laboratory. The user first sets
initial detection threshold, clustering, and merging threshold
values; The output of the recording electrodes is then fed
into the spike sorting system. If spikes are being detected
infrequently, the user may lower the detection threshold to
allow more spikes to be detected, aligned, and clustered. For
a better estimate of the threshold parameters, the user can
use software tools to initially estimate the threshold values
from previously recorded data, if it is available. One of the
main advantages of using FPGAs in such a setting is that the
reconfiguration of the system can be performed in a matter of
minutes, should the user decide that more clusters should be
supported or that the depth of each cluster is not sufficient.
Additionally, tools such as integrated logic analyzers can be
used to quantify the number of spikes assigned to each spike,
and to view the merging and averaging of cluster waveforms
in real time.

While our design supports online sorting of a single neural
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channel, the advent of multi-electrode arrays (MEAs), such
as the Utah Array [35] with the number of electrodes on
the order of hundreds, provides challenges when sorting a
relatively large amount of neural data from a large number
of channels. Due to the algorithmic changes and novel mem-
ory configuration structure, our design need not be run at
its maximum operating frequency for proper spike sorting.
Because the maximum operating frequency of our design is
more than 4000 times faster than that of typical electrode
recording configurations (24 kHz), the OSort module can be
time-multiplexed among different electrodes for multi-channel
sorting. By time-multiplexing all of the arithmetic units in
the OSort module, the main design constraint would be the
storage overhead incurred by storing spike waveforms for each
channel, with a memory offset counter used as an index for
the cluster memory for each individual channel. The memory
requirements for 20 clusters, each with a depth of 16, would be
about 15 BRAMs on Xilinx FPGAs. For 64–channel sorting,
the OSort module would need to operate at 1.53 MHz and
the memory requirement would be about 960 BRAMs; 128–
channel sorting would require a 3.07 MHz operating frequency
and about 1920 BRAMs. These large-scale solutions would be
suited for high-end FPGAs, such as Xilinx Virtex and Kintex
devices. Note that the sorting latency would remain the same
for all channels.

Various ASIC implementations if spike sorting algorithms
have recently been presented [22], [26]–[32]. In [22], we im-
plemented the template matching-based spike sorting system
using three templates in a 45-nm CMOS process. The work
in [26] performs NEO spike detection, aligns detected spikes
to maximum derivative, and implements feature extraction
via discrete derivatives. Their design consists of four 16-
channel modules. The work in [27] detects spikes with the
absolute value detection scheme and implements OSort clus-
tering for a single 16-channel module. Our increased memory
utilization is attributed in part by the parallelization of the
OSort algorithm, in which incoming spike waveforms can be
processed concurrently to the cluster management. Note that
the numerical resolution of neural samples used in [27] is 8
bits per sample and 48 samples are used per neural waveform,
which allows for significantly fewer storage elements required
for implementing the OSort clustering. Similar to [27], in [28]
spikes are detected using a voltage threshold, detected spikes
are aligned to a maximum absolute amplitude, and OSort-
based clustering is utilized. The work in [29] performs single-
channel spike sorting via NEO-based detection, maximum am-
plitude alignment, and discrete-derivative feature extraction. It
supports an unsupervised learning process, similar to the other
feature extraction and OSort-based implementations. The work
in [30] presents a multi-channel spike sorting ASIC based on
feature-extraction. Their design uses decision trees for spike
sorting in place of memory units. The design in [31] presents
a multi-channel BOTM-based spike sorting ASIC with a built-
in OSort learning phase. The work in [32] presents a multi-
channel spike sorting processor based on integer coefficient
feature extraction and clustering.

We have also implemented our designed OSort-based spike
sorting system using a standard 32-nm CMOS process. The

chip layout of our OSort-based spike sorting ASIC is shown in
Fig. 12, which is estimated to occupy 2.57 mm2 of silicon area
and consume 2.78 µW of power from a 1.16 V supply while
operating at 24 kHz. Synthesis was performed using Synopsys
Design Compiler, while place-and-route was performed using
Synopsys IC Compiler. After the chip layout is completed,
a simulation model is generated and used in a simulation
setting. A variable change dump (VCD) file is then saved
for estimating the power consumption of our ASIC design
based on processing non-random, realistic input data. The
memory units in the cluster memory module, implemented in
BRAM resources on FPGAs, are implemented using standard
cell library SRAM cells for ASIC. Table II gives the ASIC
characteristics and implementation results of various spike
sorting systems. The average sorting accuracy is defined as
the number of correctly classified/sorted spikes per cluster
compared to the spikes existing in the ground truth dataset
[7]. Our template matching-based spike sorting ASIC [22], as
well as the work in [28], [29], [31], [32], have utilized the same
ground truth dataset to quantify the accuracy of their sorting
system. The work in [26] used both synthetic data and real
data, but the synthetic data is not the same data set as that given
in [7]. The work in [27] and [30] both use real neural data for
evaluating the accuracy of their system. For a general and well-
accepted metric quantifying the performance of sorting, our
ASIC and FPGA implementations of the proposed modified
OSort algorithm achieve the same F-Scores. As the ASIC chips
in [26], [27], [30]–[32] are multi-channel designs, the area
and power consumption results for single-channel sorting are
listed for a fair comparison. During spike sorting operation,
the sampling rate is 24 Kbps. Each sample is represented using
16 bits, which results in an input bitrate of 384 Kbps. With
an average neuron spiking rate of 40 spikes per second [1],
and representing the clusterID with dlog2(20)e = 5 bits, and
appending an assign flag as the 6–th bit, the output bit rate
is 40 spike/s × 6 bits/spike = 240 bps. This results in a
1600 times data reduction rate compared to the sampling data
rate. This large reduction in data rate significantly reduces the
amount of transmission power required for the transmission
of the cluster IDs. According to [36], the energy required
to transmit one bit of data is 3 nJ, which results in a
transmission power of roughly 0.72 µW. Thus, the total power
of our ASIC chip is 3.5 µW, and the power density is
1.36 µW/mm

2, which satisfies the tissue-safe requirements
for brain implantable devices [37]. Therefore, our OSort-based
spike sorting design consumes less power than some of the
other published designs, reduces the data rate significantly
compared to all other published designs, while delivering
comparable spike sorting accuracy.

VII. CONCLUSION

This article presented the design and implementation of a
spike sorting system utilizing the unsupervised OSort cluster-
ing algorithm. We proposed a modified OSort algorithm which
significantly reduces the number of memory accesses and in
turn reduces the number of numerical operations required
for assessing the similarity between spike waveforms. The
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Fig. 12: The chip layout of the designed and implemented
OSort-based spike sorting system.

proposed OSort hardware architecture utilizes a novel modified
memory configuration scheme, allowing the system to process
incoming spike waveforms and the cluster memory man-
agement concurrently, which parallelizes the original OSort
algorithm. It is shown that our field-programmable gate array
implementation offers sorting performance comparable to that
of traditional software, while minimizing processing latency.
Compared to the recently published works, our design can
operate at higher frequencies, while minimizing the processing
latency, which is ideal for real-time analysis of single-unit
activity. Functional verification was performed by verifying the
performance of our implemented system using a well-known
simulated dataset. Our ASIC implementation results showed
that our design consumes less power than the other state-of-
the-art spike sorting ASIC implementations, has the highest
data-rate reduction, while achieving an approximate sorting
accuracy. The feasibility of our ASIC for in-vivo operation
was discussed and confirms that the power dissipation of our
ASIC implementation of the parallel OSort algorithm is safely
within the tissue-safe requirements.
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