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Compact and Low-Power Neural Spike
Compression Using Undercomplete Autoencoders
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Abstract—Implantable microsystems which collect and trans-
mit neural data are becoming very useful entities in the field of
neuroscience. Limited by high data rates, on-chip compression
is often required to transmit the recorded data without causing
power dissipation at levels that would damage sensitive brain
tissue. This article presents a data compression system designed
for brain computer interfaces (BCIs) based on undercomplete
autoencoders. To the best of our knowledge, the proposed system
is the first to achieve an average spike reconstruction quality
of 14 dB signal-to-noise-and-distortion ratio (SNDR) at a 32×
compression ratio (CR), 18 dB SNDR at a 16× CR, 22 dB SNDR
at an 8× CR, and 35 dB SNDR at a 4× CR of neural spikes. The
spike detection and autoencoder-based compression modules are
designed and implemented in a standard 45-nm CMOS process.
The post synthesis simulation results report that the compression
module consumes between 1.4 µW and 222.5 µW of power per
channel and takes between 0.018 mm2 and 0.082 mm2 of silicon
area, depending on the desired CR and number of channels.

I. INTRODUCTION

One of the primary motivation of brain-computer interfaces
(BCIs) is to restore behavioral functions for patients who
are unable to move or communicate through normal neural
pathways caused by strokes or chronic deceases. BCIs capable
of restoring a full range of movements to paralyzed individuals
require simultaneous recordings from a relatively large pop-
ulation of brain neurons to accomplish acceptable prediction
accuracy. However, wireless transmission of large amounts of
neural data for off-line signal decoding when the number of
microelectrodes approaches a few hundreds imposes serious
limitations, such as the potential threat of heat-related tissue
damage. For instance, the need to collect more data at higher
resolutions has lead to neural recording systems with up
to 1024 channels, 62.5 kHz sampling frequency, and 24-bit
analog-to-digital converter (ADC) resolution [1]. Typically
around 64 channels with 20 kHz sampling and 10 to 14
bit resolution is employed, [2]–[8], resulting in data rates in
the Mbits/s range. At such high data rates, it is unlikely to
transmit all collected data without dissipating excessive power,
which would cause damage to sensitive brain tissue. To reduce
the data rate of neural recording systems, many researchers
have applied various compression techniques. Compressed
sensing (CS) has proven to be a viable method among
others [9], [10]. Most recently, it has been shown that CS
in conjunction with dictionary learning is an effective and
efficient approach for compressing neural signals [11], [12].
The trade-off present in all compression techniques for BCIs is
power consumption for a desired signal reconstruction quality.
Both the number of arithmetic operations of the underlying
compression techniques and compression ratio (CR) have a
direct impact on power dissipation. The compression systems

proposed in previously published works aim to find a solution
which produces the highest quality reconstruction while still
consuming acceptable amounts of power.

The two prevailing philosophies in neural signal decoding
are rate-based and spike-based decoding [13]. In rate-based
decoding, information is communicated by the rate at which
a spike fires. In contrast, spike-based decoding assumes that
individual spikes matter, and more complicated temporal codes
of spikes carry information. In either scenario, the meaning of
a spike train can be decoded from a combination of knowing
spike times and shapes. It follows that neural signal processing
systems which detect and transmit only compressed versions
of neural spikes could aid in the decoding of neural spike
trains. This article proposes to utilize autoencoders for the
compression of neural spikes. Autoencoders are a specific type
of neural network in which the networks is trained to replicate
its input [14]. Through the process of backpropagation, the
autoencoder is trained to compress and reconstruct a given type
of data based upon what optimal compression and expansion
are learned from the training data. This network can then be
mapped onto a BCI system such that the first part of the
network is computed on an implantable device in-vivo, the
compressed data at the bottleneck of the network is transmitted
wirelessly, and an optimal reconstruction is performed off-chip
where power dissipation is not a major concern.

The rest of this article is organized to progressively describe
the application of autoencoders and neural networks in BCIs
for the purpose of neural spike reconstruction. Section II
briefly explains the mathematical basis of autoencoders and
the parameters which define their training and compression
performance. In Section III, we layout the structure of a BCI
system and explain how the autoencoder would be incorpo-
rated for compression. Section IV presents the performance
of autoencoder-based compression of neural data. Comparison
with other compression methods in recently published work is
discussed. Section V details a digital circuit designed to detect
spikes, and compute the portion of autoencoders that would
need to be implemented on a chip for brain implantation.
The ASIC implementation results and comparison with other
compression circuits are also presented. Finally, Section VI
makes some concluding remarks.

II. AUTOENCODERS

An autoencoder is a type of unsupervised neural network
which is trained so that the network’s output reproduces its
input. In general, the input and output of the autoencoder
must be the same size N . The two primary elements of an
autoencoder are the encoder and decoder. The hidden layer
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Fig. 1. An autoencoder with N = 4 and M = 2. The hidden layer
between the input and output layers is considered the bottleneck, which is
the point where the data is coded. Going from one layer to the next requires
weight matrix multiplication, bias vector addition, and activation function
computation.

of size M in an autoencoder, known as the bottleneck, is
responsible for compression. Sending data through an M -sized
layer gives the compression ratio CR = N/M . The network
up to and including the M -sized layer is the encoder and the
remainder of the network is the decoder. The layers in the
encoder define how the input data is coded. The decoder then
completes the neural network to reconstruct an approximation
of the input. Significant features of the dataset can be learned
while the network is trained. As with most feed-forward neural
networks, each layer of the network can be represented as a
matrix multiplication, followed by a vector addition and an
activation function [14]. Common activation functions include
a saturated linear function and a logistic sigmoid function [15].

Fig. 1 shows a basic undercomplete autoencoder. The first
layer transforms a 4 × 1 input vector into a 2 × 1 vector.
This part of the network is considered the bottleneck. At this
point the data is both coded and compressed. The second layer
of the network then decodes the 2 × 1 coded data vector to
approximate the input. For simple autoencoders with a single
hidden layer, the number of arithmetic operations of coding
the data is directly proportional to the size of the code.

The mathematical representations of a simple autoencoder
with one hidden layer can be given as:

t = f1

(W11,1 . . . W11,N
...

. . .
...

W1M,1 . . . W1M,N


x1...
xN

+

 b11...
b1M

)

x̂ = f2

(W21,1 . . . W21,M
...

. . .
...

W2N,1 . . . W2N,M


 t1...
tM

+

 b21...
b2N

)

where x denotes the system’s input, t denotes the coded data,
x̂ denotes the reconstructed approximation of the input, the W
matrices denote the weights of each layer, the b vectors denote
biases, and functions f1 and f2 are the activation functions of
the encoder and decoder, respectively.

The relation between the size of the code and the size of
the input defines how compression is achieved. The size of
the coded data is either greater than (overcomplete), equal
to (complete), or smaller than (undercomplete) the size of
the input. In undercomplete autoencoders, the code is by
definition a compressed representation of the input. Training a

network to recreate data from a smaller representation forces
the network to learn the most significant features of the
training data. There are multiple applications of sparse data
representations. For example, image compression often relies
on sparse representation of images in the frequency domain.

Training an autoencoder is most often done by feeding the
network a set of sample data and using a training algorithm
to minimize the loss function, which measures the difference
between the original and reconstructed data. Given a code size
M , autoencoders learn efficient encoder and decoder weights
for a given dataset. Additional parameters can be added to
the loss function, which further affect the properties of the
code. A general formulation for the loss function used to train
undercomplete, complete, and overcomplete one-dimensional
autoencoders is given as [16]:

L =
1

N

N∑
n=1

(x[n]− x̂[n])2 + c1r(W1,W2) + c2r(x, x̂), (1)

where the first term in (1) denotes the mean squared error
(MSE) between input and reconstructed output, the second
term denotes a weight regularization function, and the third
term denotes a sparsity regularization function. Weight and
sparsity regularization can be as simple as the l1 and l0 norms,
respectively. The scaling factors c1 and c2 are used to adjust
how much each term is weighted in the loss function. Regu-
larization functions are added to the primary cost function to
give the network some desired effect. For example, a sparsity
regularization function adds a penalty if the results of training
are not sparse. This causes the network to optimize itself to
produce sparse outputs. A weight regularization penalizes the
network when the weights are larger than desired, and in turn
optimizes the network to perform well with small weights.
While equation (1) gives a general outline of the loss function,
a more specific loss function is typically determined based on
the underlying application.

Neural spikes are often quite similar in their shape and
take on only a few significant variations based on their
meaning. In other words, the inherent dimension of neural
spikes needed for classification or approximate reconstruction
is less than the dimension of neural spikes in the time domain.
This suggests that primary features of a neural spike can be
represented by fewer values than those required in the time
domain. In general, undercomplete autoencoders perform well
by determining a relatively small number of features common
to multiple items within a dataset, which makes them suitable
for compressing predictable data. They perform especially
well in situations where the expected data falls constantly
into a few classes. These features of neural spikes make an
undercomplete autoencoder a suitable model for compression.

Principal component analysis (PCA) [17] is commonly used
to efficiently represent data and is most similar to autoen-
coders. PCA reduces the dimensionality of data by finding a
set of mutually orthogonal vectors. These vectors can create
a lower-dimensional subspace in which the most pertinent
portions of data are present. An autoencoder with linear
activation functions is identical to PCA. However, the linear
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Fig. 2. System-level block diagram of a single channel BCI utilizing an autoencoder for in-vivo neural signal compression. Bias vector additions and
activation functions are performed off-chip (in-silico) because neither compress data. In multi-channel systems, the elements after the neural amplifier would
be multiplexed.

restrictions of PCA can limit its performance relative to a non-
linear autoencoder. Primarily, autoencoders are less sensitive
to variations within neural spike classes and random noise.
These two advantages of autoencoders have been exploited in
comparisons between autoencoders and PCA for face recog-
nition [18]. The key advantage of PCA over autoencoders is
that a less complex training process is required. However, in
low-power systems where training is performed off-chip, this
is not a concern.

Two other popular techniques used for low-power data
compression are CS [19] and dictionary learning [11]. CS
allows for sub-Nyquist rate sampling of a signal given that the
signal is sparse in some domain. Similar to autoencoders, the
CS sampling process requires matrix multiplication of an N -
length signal by a M×N measurement matrix. After compres-
sion, a sparse solution can be found using a matching pursuit
algorithm and an approximation of the original signal can be
reconstructed. The efficiency of CS compression is a function
of the measurement matrix. The size of the measurement
matrix determines the compression ratio and the elements of
the compression matrix determine the arithmetic complexity.
Dictionary learning is the process of finding the dictionary
capable of creating the most efficient sparse representations
of a given dataset. Systems which utilize CS in conjunction
with dictionary learning have shown to be very efficient at
compressing full neural signals as opposed to only spikes [10],
[11], [20].

III. SYSTEM FRAMEWORK

The system-level block diagram of our autoencoder-based
compression system for BCIs is shown in Fig. 2. The part
of the BCI system, that is implanted on the patient’s brain
(in-vivo) is responsible for reading the data, compressing it,
and then sending it off-chip to be reconstructed or classified
(in-silico). Since neural data between spikes is primarily noise
and does not represent meaningful information in rate-based
and spike-based decoding schemes [13], it is feasible to only
process and transmit neural spikes for BCIs [21], [22]. By
discarding the noise between neural spikes, the amount of data
that must be processed by the on-chip compression module

and transmitted wirelessly is greatly reduced, which also
reduces the overall energy dissipation of the brain-implantable
chip. Furthermore, having predictable input data allows the
compression to be optimized based on the application. All BCI
system frameworks share a number of characteristics including
sensing elements, neural amplifiers, ADCs, and transmitters
[9], [23]–[26]. The system framework shown in Fig. 2 is for a
single channel system. In a multichannel system, it is common
for an analog multiplexer to feed the ADC such that only one
data stream arrives at the digital signal processing element and
transmitter [23], [26].

A. Neural recording

To record and process neural data, one or more electrodes
must be used to read the voltage levels at certain regions of the
brain. For the small voltages to be used in digital circuits, they
must first be amplified. Low-power neural amplifiers typically
consume around 7.6 to 9.8 µW/Channel to amplify the neural
signals with over 55 dB gain [3], [19]. In neural recording
systems with multiple channels, the neural amplifiers are often
the portion of the circuit which consumes the most power. In
single channel neural recording systems, the neural amplifier
leads directly to the ADC and then to the signal processing
part of the circuit, as shown in Fig. 2.

B. Spike detector

The purpose of the spike detector is to detect the spikes
and pass them to the compression module in an organized and
predictable way. This requires a definition of a spike which
can be defined in mathematical terms, based on spike window
size, spike peak threshold, and spike sensitivity. The spike
detector used in our system operates by finding the spike’s
peak values, which is defined as a value which is greater a
variable threshold and is also greater than a fixed number
of values surrounding it. Multiple of the most recent data
points are stored and once a spike is detected, the values are
sent to the compression module along with the data which
comes after the spike peak for some fixed number of samples.
Because the computational complexity of spike compression is
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directly proportional to the spike window size N (the number
of samples per spike), adjusting the amount of data which
is sent to the compression module when a spike is detected
directly impacts the number of arithmetic operations required
for compressing a spike.

We use the peak value detection technique [27] due to
its hardware simplicity. Other common spike detection ap-
proaches, including the non-linear energy operator (NEO) [28],
and wavelet based detection [29], use multiplications. Addi-
tionally, the NEO method requires another module for spike
alignment. By using a relatively simple detection method,
which requires no multiplication nor an additional alignment
module, the number of arithmetic operations and power con-
sumption are both reduced.

C. In-vivo compression

As explained in the previous section, if the autoencoder
has only one hidden layer, then data is entirely compressed
by the first matrix multiplication. For this reason, the only
element of the on-chip compression is a matrix multiplier. For
compressing a spike with N data points into an M -length
code, it must multiply an M × N weight matrix with an
N ×1 data vector representing the spike. The resulting M ×1
length code is then transmitted to the off-chip module. The
weight matrix W1 is constant and is stored on-chip. The
matrix-vector multiplication requires M × N multiplications
and M × (N − 1) additions.

D. Transmitter

Classification of neural spikes is a computationally-intensive
process and it is infeasible to do the vast majority of required
computations within the strict power constraints of neural
implants. Therefore, the data is generally transmitted off-chip
for further processing. Along with the neural amplification,
wireless transmission of neural signals off-chip is often the
element of the BCI which consumes the most power. Wireless
transmission typically consumes between 30 µW and 6 mW
[30]–[34]. How much power the transmitter consumes is
largely a function of data rate. Large-scale transmitters for
medical implants transmit data in the Mbps range and consume
power at the mW level [31]–[33]. In contrast, small-scale
transmitters for medical implants transmit data in the Kbps
range and consume power in the tens of µW range. For
example, the transmitter proposed in [34] transmits 10 Kbps
and uses 3 nJ per bit. By comparison, digital compression
circuits often only consume 0.5-40 µW power [9], [23]–
[26]. It follows that in small-scale BCIs with relatively low
transmission data rates, the reconstruction quality becomes the
key decision factor in compression circuit as opposed to power
consumption.

E. In-silico reconstruction

The off-chip receiver receives partially coded neural signals
from the implantable device. The data is completely coded
off-chip and then decoded to attain an approximation of the
original signal. Because there are no strict restrictions on the

size and power consumption of the off-chip reconstruction,
it is hence done by software in floating-point arithmetic. As
shown in Fig. 2, the off-chip reconstruction requires two vector
additions, two activation functions computations, and a matrix
multiplication. It is not necessary to use an activation function
in the decoder.

IV. SYSTEM VALIDATION

A. Validation using simulated data

For the primary evaluation of the autoencoder-based com-
pression of neural spikes, we use the publicly available
Leicester Database [35]. The database includes 20 different
simulated neural waveforms, each of which contain three
different classes of neural spikes. The simulated waveforms
were created by randomly selecting spikes from a database
of 594 spike shapes from neural recordings, then placed with
random amplitudes and times in each waveform to resemble
spikes from other neurons. Then, a preselected spike train
with predefined types of spikes was imposed on the random
signal. Noise with a standard deviation between 0.05 and
0.4 relative to the magnitude of the spikes was added to the
simulated waveform. The data is first simulated at 96 kHz, then
down sampled to 24 kHz. Within the database, datasets further
differ based on the ease of spike classification. The database
includes only two levels of classification difficulty (Easy and
Difficult). For our primary evaluation, we used the Leicester
dataset with Easy classification difficulty and noise with 0.05
standard deviation, which presents a -30.5019 dB signal-to-
noise-ratio (SNR). Because the systems are being tested for
their ability to reconstruct neural spikes, as apposed to classify
them, we found that spike classification difficulty had little to
no effect on compression and reconstruction performance. For
a fair comparison, we have filtered out overlapping spikes [11].
Since the dataset we used for training the networks includes
simulated spikes which fire from far off neurons, distant
neuron firings are accounted for in the training and testing of
the autoencoders. Fig. 3 shows the spikes used for our initial
evaluation, which are captured within a window of 64 data
points, and separated by the class of spike. Our spike detection
module detects 99.08% of spikes in our primary dataset. While
our spike detection performs well, noisier environments may
warrant the use of more accurate and computationally complex
spike detection techniques, such as NEO.

The designed autoencoders are trained using the MATLAB
Deep Learning Toolbox for multiple datasets at multiple
compression ratios with variations on the parameters, such
as window size and the activation function. We used scaled
conjugate gradient backpropagation with an MSE-based loss
function, which includes a relatively small L2 weight regular-
ization. Our utilized cost function is given as:

C =
1

N

N∑
n=1

K∑
k=1

(xkn − x̂kn)2 + 0.0001Ω,

where x denotes the training data, N denotes the length of
each spike in samples, K denotes the number of training
samples, and Ω denotes an L2 weight regularization. We found
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Fig. 3. Simulated neural spikes from the Leicester database [35]. Data on
the left from C Easy2 noise005.mat have Easy classification difficulty and
data on the right from C Difficult1 noise005.mat have difficult classification
difficulty. The thick black line is the mean. As shown above, 64 samples are
sufficient to capture the spikes.

that a weight regularization coefficient of 0.0001 was small
enough for the network to have near optimal performance,
but also large to keep the weights small enough that only a
few integer bits are required for the fixed-point digital logic
implementation of the cost function. Rather than training over
a set number of epochs, each autoencoder is trained until the
performance gradient fell below 0.000001. To measure the re-
construction quality, we use the signal-to-noise-and-distortion-
ratio (SNDR) defined as 20 log10

||x||2
||x−x̂||2 , where x and x̂

denote the original and reconstructed signal, respectively. In
addition to providing a reliable metric for gaging accuracy,
SNDR allows us to compare the reconstruction quality of
various compression methods.

Among alternative activation functions for the encoder,
including a saturated linear function and hyperbolic tangent,
we found that the logistic sigmoid consistently outperformed
the other two. Because the slope of the logistic around zero
is lower than the slope of the hyperbolic tangent, there is
more resolution in the result after rounding errors introduced
by a fixed-point implementation. Therefore, for the activation
function in the encoder, we used the logistic sigmoid function
f(z) = 1/(1 + e−z). For the decoder, we used a linear
activation function f(z) = z to avoid imposing limitations on
the output. Because the activation function in the decoder is
the last step in the autoencoder, the range of the activation
function is the range of the output. Since other common
activation functions have an output value between -1 and
1, the incoming data would have to be scaled for logistic
sigmoid, saturated linear, and hyperbolic tangent functions.
While scaling would allow using a more complex activation
function, it would increase the likelihood of underflow in
fixed-point implementations.

To determine how the spikes within the dataset should be
divided into training and testing spikes, autoencoders with
multiple sizes are trained with a varying amount of data
used for training. Then each autoencoder is tested with the
remaining spikes in the dataset. Note that these networks were
trained using spikes detected in our primary dataset. After
detecting spikes and removing overlapping spikes, there were
2,789 spikes in the dataset to be used for testing and training.
The mean SNDR of the reconstructed test spikes are given in
Table I. From Table I, it can be seen that the autoencoders

perform best when 70% of each dataset is used for training,
but they perform nearly as well when only 30% of each dataset
is used for training.

TABLE I
COMPARISON OF MEAN SNDR VALUES OF SPIKES RECONSTRUCTIONS AS

A FUNCTION OF PERCENTAGE OF DATA USED FOR TRAINING

Percent of
data used

for training

Mean
SNDR
(dB)

CR = 16

Mean
SNDR
(dB)

CR = 8

Mean
SNDR
(dB)

CR = 5.33

Mean
SNDR
(dB)

CR = 4
5% 18.68 23.08 27.87 32.68

10% 18.92 23.49 28.73 33.56
20% 18.98 23.61 29.62 33.71
30% 19.00 23.70 29.50 34.06
40% 18.99 23.64 29.61 34.19
50% 19.02 23.66 29.63 34.13
60% 19.00 23.61 29.66 34.04
70% 19.04 23.60 29.68 34.17

For our primary evaluation, we continued to use the Le-
icester Dataset with easy classification difficulty, and added
noise with 0.05 standard deviation, and overlapping spikes
removed. We trained the autoencoders for spikes with a
window size of both 64 and 128 for comparison, but we found
that 64 samples are sufficient to capture a spike and lead to
a more efficient compression system with reduced number of
arithmetic operations. For the remaining autoencoders in this
section, 837 spikes (30%) were used for training and 1,952
spikes (70%) were used for testing.

After training autoencoders for all combinations of N ∈
{64, 128} and M ∈ {4, 8, 12, 16, 20, 24, 28, 32}, we used them
to compress and reconstruct all test spikes and calculated the
SNDR for each test. Then, we averaged the reconstructed
spikes’ SNDR for all 1,952 test spikes to find the mean SNDR
in dB of a given autoencoder. Table II gives the resulting mean
SNDR, SNDR standard deviation, minimum SNDR, and num-
ber of training epochs for all autoencoders trained and tested
using the data shown in Fig. 3. We repeated this process using
Leicester Difficult data with 0.05 standard deviation noise.
The difficult data had 3,007 spikes, which were separated into
902 training spikes and 2,105 test spikes. After training 16
autoencoders with varying input sizes and compression ratios,
we tested all autoencoders on all test spikes. the performance
of autoencoder compression on Difficult Leicester data is given
in Table III. Autoencoders perform nearly as well on the
Difficult dataset as they perform on the Easy dataset at high
compression ratios. At lower compression ratios, autoencoders
perform better on the Difficult dataset than the Easy data.
Autoencoders perform well when compressing nearly uniform
data. The property of the Difficult dataset which makes it
difficult to classify is that the spike classes are similar. While
this property makes classification more challenging, it actually
alleviates compression’s complexity.

The result of training the networks is finding efficient
values for the weights and biases, given the parameters of
the network. Not only do the weights provide information
about the important features of neural spikes, but also partially
establish the requirements of digital circuit implementations.
We found that the weights in trained autoencoders mirror
the spikes themselves. This allows us to conclude that the
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TABLE II
ACCURACY OF THE AUTOENCODERS TRAINED AND TESTED USING

SIMULATED NEURAL SPIKES (EASY DATASET)

N CR
Mean

SNDR (dB)

SNDR
Standard
Deviation

(dB)

Worst
Case

SNDR (dB)
Epochs

64 16.00 19.00 2.71 7.13 1317
64 8.00 23.70 2.91 11.22 1694
64 5.33 29.50 3.00 12.72 1617
64 4.00 34.06 2.62 15.65 3619
64 3.20 35.07 2.46 16.64 2648
64 2.67 35.15 2.45 16.66 3009
64 2.29 35.20 2.44 16.74 2299
64 2.00 35.23 2.44 16.81 3523
128 32.00 13.45 3.17 2.21 1725
128 16.00 15.82 3.34 2.90 1744
128 10.67 18.27 3.49 3.71 2980
128 8.00 20.80 3.61 5.00 2076
128 6.40 23.34 3.80 5.72 3698
128 5.33 25.80 3.95 6.42 4202
128 4.57 28.38 4.13 8.04 3187
128 4.00 30.35 4.26 8.53 3942

TABLE III
ACCURACY OF THE AUTOENCODERS TRAINED AND TESTED USING

SIMULATED NEURAL SPIKES (DIFFICULT DATASET)

N CR
Mean

SNDR (dB)

SNDR
Standard
Deviation

(dB)

Worst
Case

SNDR (dB)
Epochs

64 16.00 17.90 2.79 9.80 2354
64 8.00 22.98 2.99 13.53 3303
64 5.33 28.53 3.11 17.11 3388
64 4.00 34.27 2.84 19.59 2131
64 3.20 38.62 2.68 25.16 2649
64 2.67 41.75 2.90 27.20 3165
64 2.29 43.67 3.08 28.01 3680
64 2.00 49.03 3.23 31.69 4196
128 32.00 11.71 3.81 1.76 1162
128 16.00 14.25 4.32 2.61 2190
128 10.67 15.76 4.55 2.83 3218
128 8.00 17.93 5.04 3.06 4245
128 6.40 19.76 5.41 3.31 5273
128 5.33 22.23 5.85 3.59 6299
128 4.57 23.95 6.05 4.28 7328
128 4.00 25.89 6.19 5.00 8355

autoencoders learned that a spike’s peak is the most significant
portion of the spike and have the largest influence on the
coded values. As the compression ratio lowers, the network
transmits more data per spike. This allows more possible
compressed representations of spikes and hence, more accurate
reconstruction.

B. Validation using in-vivo data

We also tested our design with a dataset of a single cell
neural waveform recordings from epileptic patients [36]. Com-
pared to the Leicester database, this dataset is not as widely
used as a benchmark for neural data compression. However,
it would serve to illustrate how effective autoencoders are for
neural data compression of nonuniform spikes. Fig. 4 shows
the complete dataset of human neural waveforms. It includes
9,195 spikes, which we scaled by a factor of 1/256, and
divided into 2,758 (30%) training spikes and 6,437 (70%)

Fig. 4. Recorded neural data from epileptic patients [36]. The thick black
line shows the mean.

testing spikes. As with the simulated dataset, we trained
several autoencoders for different compression ratios. Once
again, we used a window size of N = 64, a logistic sigmoid
activation function in the encoder, and no activation function
in the decoder. As with the previously trained autoencoders,
we used an MSE based cost function. In contrast with the
autoencoders trained on simulated data, we did not use an
L2 weight regularization for training networks on this dataset.
Table IV gives the mean reconstruction accuracy of the au-
toencoders trained and tested using the recorded neural spikes
with N = 64.

TABLE IV
ACURACCY OF THE AUTOENCODERS TRAINED AND TESTED USING

RECORDED NEURAL SPIKES

CR Mean
SNDR (dB)

SNDR
Standard

Deviation (dB)

Worst
Case

SNDR (dB)
Epochs

16.00 12.41 3.55 1.88 1746
8.00 15.74 3.76 5.00 1110
5.33 19.45 3.90 8.03 1615
4.00 24.75 3.98 11.77 4261
3.20 30.82 4.02 13.59 2648
2.67 37.44 4.06 12.87 3164
2.29 42.85 4.06 15.22 3681
2.00 45.09 4.08 10.45 5783

In comparison to simulated data, the in-vivo data is less
uniform. This lowers the reconstruction accuracy, especially
at high compression ratios. Comparing Tables II and III to
Table IV shows that autoencoders perform around 5 dB better
on simulated data when the compression ratio is greater than
3. Moreover, the decompressed signals reconstruction SNDR
have about 1 dB greater standard deviation. At lower compres-
sion ratios, autoencoders perform comparable on simulated
and in-vivo datasets. Fig. 5 illustrates this trend.

C. Comparison to other spike compression methods

Various published work suggest alternative techniques for
compressing neural signals with varying degrees of accuracy.
Common compression techniques include the Discrete Wavelet
Transform (DWT) [37] and dictionary learning [11], [12],
[38]. The DWT transforms data by passing it through a
series of lowpass and highpass filters to define it in terms of
both frequency and time. While the DWT has the advantage
of not needing a training phase, the convolution operations
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Fig. 5. Autoencoder compression on multiple datasets. N = 64

.

make hardware implementation power hungry. Furthermore,
the DWT underperforms compared to autoencoders, as shown
in Fig. 6. Note that the DWT compression shown in Fig.
6 uses Daubechies wavelets db7 and db17 for N = 64
and N = 128, respectively. We tested DWT compression of
neural spikes in the Leicester dataset using Haar wavelets,
Daubechies wavelets, coiflets, biorthogonal wavelets, Fejer-
Korovkin filters, and reverse biorthogonal wavelets and found
Daubechies wavelets performed the best on this data. Recently,
sparse representations [39] have been studied as a way to
efficiently interpret data. Dictionary learning is a more specific
form of compression that uses sparse representations. It relies
on multiplying an N -length input vector by an M × N
sensing matrix which satisfies the random isometry property
(RIP) to compress the data into an M -length vector. Common
matrices which satisfy the RIP are Gaussian matrices and
Bernoulli matrices [11]. If the data is sparse in relation to
some dictionary D, then it can be partly recovered after
compression using a matching pursuit algorithm. As with the
proposed autoencoders, the number of arithmetic operations
required in the dictionary learning based systems is N ×M
multiplications and M × (N − 1) additions. Extensive recent
research prove the viability of using dictionary learning for the
compression of neural data [11], [12], [40]. These published
work found success using Bernoulli matrices as the sensing
matrix. Because the sensing matrix in dictionary learning with
Bernoulli matrices only include 1 and -1 entries, the number of
arithmetic operations is effectively lowered to M × (N − 1)
additions. More recently, dictionary learning in conjunction
with on-line spike sorting and compressed sensing [38] has
been shown to be an efficient method providing a mean
SNDR of 11.60 dB and 10.21 dB at CR = 10 on Easy and
Difficult Leicester data, respectively. On the more narrowly
defined task of compressing neural spikes as opposed to the
full neural signal, autoencoders outperform dictionary learning
reconstruction at a higher compression ratio of CR = 16.
The increased amount of data processing and transmission
required to compress and reconstruct a full neural signal is
unnecessarily complex in systems which only use the neural
spike shape and time for decoding.

Fig. 6 shows the SNDRs for various compression techniques
and those of our proposed autoencoder-based compression.
Partial discrete cosine transformation (DCT) is a compression
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Fig. 6. Reconstruction accuracies of various compression methods. All
methods in this comparison used the Easy Leicester data [35].

method in which only the DCT coefficients representing the
frequencies most present in a given dataset are computed.
When the signal is reconstructed, all other coefficients are
assumed to be zero. PCA reduces the spike into its most
significant components based upon a set of test spikes. Our
proposed method reconstructs the spikes with a greater SNDR
at M = 4 (CR = 32) than any other methods with M = 12
(CR = 10.6667).

V. HARDWARE ARCHITECTURE OF THE COMPRESSION
MODULE

We have designed the spike detection unit and the compres-
sion module. The circuit would accept a neural waveform at a
constant data rate at the input, and its purpose is to efficiently
parse the neural signals for spikes and then compress each
spike. The compression circuits of the published BCI systems
take up to 0.4 mm2 of area, as given in Table VI. Using
a current CMOS process, a great deal of digital logic can
fit within the reasonable size of a compression circuit for
BCIs. Moreover, due to the relation between system frequency
and power dissipation, we optimized the circuit to operate
at relatively low frequencies. The number of electrodes can
exceed 1024 [1], but 64 is widely used [4], [6], [8]. To process
the incoming data, the system operates with a frequency equal
to the data rate. Each channel typically samples at around 20
kHz and hence, the spike detector and compression circuit will
likely have to process between 20,000 and 1,280,000 samples
per second.

Because the identifying portion of the spike reaches the
detector after the beginning of the spike, the data which is part
of the spike and arrives before the peak must be stored. We use
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TABLE V
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF THE AUTENCODERS WITH SPIKE DETECTOR IN STANDARD 45-NM CMOS PROCESS.

M WL Freq. (MHz) Internal Power (µW ) Leakage Power (µW ) Switching Power (µW ) Total Power (µW ) Area (mm2)
4 14 0.02 0.38 0.23 52.05 52.65 0.018
4 14 1.28 24.11 14.26 52.05 90.42 0.018
8 14 0.02 0.68 0.40 87.73 88.81 0.031
8 14 1.28 43.40 26.17 87.78 157.4 0.031

12 16 0.02 1.30 0.84 170.8 172.9 0.064
12 16 1.28 83.42 53.63 168.7 305.8 0.064
16 16 0.02 1.88 1.20 219.5 222.5 0.082
16 16 1.28 120.5 76.38 219.5 416.4 0.082

an input buffer of 22 registers. At the output of the last buffer, a
multiplexer either permits data to be sent to the compression
module or discards it. At each clock cycle, the data in the
second input register is compared to the data in the first input
register, third input register, and a threshold value. If the value
in the second register is greater than all three other values, then
its value is the peak of a spike. For the next 64 clock cycles,
the multiplexer at the output allows data to be sent to the
compression unit. The size of the buffer determines where in
the spike’s window the peak occurs. Having a buffer size of
22 causes the peak to appear at the 20-th index of the spike.
The data is sent from the spike detector to the compression
unit, one value at a time, in the burst of 64 data points for each
spike. The compression unit is then responsible for multiplying
the 64 inputs by the weight matrix.

Fig. 7 shows the block diagram of the designed compression
unit. An array of M multiply-accumulate (MAC) units accept
the inputs in parallel and multiply each of the 64 inputs
by a weight corresponding to the input’s index within the
spike. To feed the weights to the MACs, a series of M read-
only memories (ROMs) are used. All ROMs are addressed
with one counter in the control unit. To reduce the power
consumption and the number of arithmetic operations of
the proposed design, all operations are computed in fixed-
point arithmetic. While using fixed-point arithmetic is more
power and area-efficient than floating-point computation, the
quantization error must be controlled. Fig. 8 shows the SNDR
for each autoencoder as a function of word lengths (WL).
For a relatively small M , 4 integer bits and 10 fraction bits
(WL = 14) are sufficient to keep SNDR within 0.1 — 0.6
dB of the floating-point’s SNDR. At larger values of M , 4
integer bits and 12 fraction bits (WL = 16) are required to
reconstruct the spikes within 0.1 — 0.6 dB of the floating-
point’s SNDR. For the weights, the same number of fraction
bits as the rest of the system is used, but only two integer
bits are required due to the small magnitude of the weights.
Off-chip operations use floating-point arithmetic.

We designed and synthesized eight autoencoders using
Synopsis DC Compiler in a standard 45-nm CMOS technology
using the OSU-SoC standard cell kit from FreePDK [41].
After netlist compilation, Cadence SOC Encounter was used
for place and route. After place and route, the netlists of
each design was exported from Cadence SOC Encounter. We
then used Cadence NCLaunch to compile the netlist with the
standard cell library. A testbench for each compiled design was
developed. Our testbenches took 4,000 samples from the Easy
Leicester data, converted them to fixed-point, then repeatedly

Fig. 7. Block diagram of the compression unit.
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Fig. 8. Reconstruction accuracy for various word lengths. These were
obtained using the autoencoders and test spikes from Table II.

sent the 4,000 samples as input to the circuits under test. Each
circuit was tested using Cadence SimVision for 100 ms and the
netlist activities were saved as a Value Change Dump (VCD)
file. The contents of the VCD files were then used as the
activity profile of the circuits. We used Cadence Encounter
to estimate the power consumption of the placed and routed
circuits using the switching activity specified in the VCD file
at a 1.1 V operating voltage. Table V gives the estimated
area and power consumption of various autoencoders. The
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TABLE VI
CHARACTERISTICS AND ASIC IMPLEMENTATION RESULTS OF THE AUTOENCODERS COMPARED TO OTHER BCI COMPRESSION CIRCUITS

Work Method CR Process Channels Power/Ch. (µW ) Area/Electrode (mm2)
Proposed, M = 4 Detector + Autoencoder 16 45-nm 1 52.65 0.018
Proposed, M = 4 Detector + Autoencoder 16 45-nm 4 13.61 0.018
Proposed, M = 4 Detector + Autoencoder 16 45-nm 16 3.85 0.018
Proposed, M = 4 Detector + Autoencoder 16 45-nm 64 1.41 0.018

[9] CS 8 180-nm 16 4.8 0.191

[19] CS 2.05 90-nm 1 1.9 0.09
[23] CS Up to 16 180-nm 16 9.4 3 0.0625
[24] CS 6 130-nm 64 0.028 -
[26] Slope Prediction 2.55 350-nm 4 0.54 3 0.4
[40] CS + Dictionary Learning 10.6 180-nm 4 0.83 0.11

1Estimate from Figure 9 in [9].
2CR = 8.3 from spike detection. The detected spike is not compressed.
3Includes ADC power.
4Power of proposed circuits is based on simulation.

number of data points N per spike is 64 for all systems
listed in Table V. The frequencies of 20 kHz and 1.28 MHz
represent the 1-channel and 64-channel systems, respectively.
In addition to the total power consumption, power dissipated
per channel is an important factor to gage how efficiently data
is compressed. For the systems with 0.02 MHz frequency, the
power consumption per channel is equal to the total estimated
power and for the systems operating at 1.28 MHz, the power
per channel is the total estimated power divided by 64. This
is because when N , M , and WL do not change, the circuit
is the same design. To increase the number of channels the
circuit can process, the frequency is proportionally increased.
One can see from the results in Table V that increasing
the number of channels increases the power efficiency by
amortizing leakage power across channels. Utilizing standard
cell libraries that allow for a higher threshold voltage could
also increase the power efficiency of circuits operating at
relatively low frequencies by reducing overall leakage power.
Note that the designs were not fabricated.

Table VI gives the characteristics and implementation re-
sults of various published compression circuits along with
ours. The method given in [40] compresses spikes with CS
and dictionary learning, then uses spike clustering in principle
component subspace for classification. The designs in [40]
and [19] consume power and area comparable to our designs.
Using a sensing matrix and a dictionary D, CS compression
allows for neural signals to be sampled at sub-Nyquist rates.
While our proposed designs have comparable area and power
consumption, our designed system offers the highest compres-
sion ratio, which leads to minimal data being sent, which
reduces overall on-chip power consumption. Our proposed
designs are able to reconstruct the transmitted neural spikes
more efficiently than the systems listed in Table VI because
they focus on full neural signal transmission as opposed to
neural spike transmission.

While neural spikes can be efficiently compressed and re-
constructed using autoencoders, an autoencoder-based system
for the compression of neural spikes is not without concern.
Spike morphology can change over time and a new spike class
may be introduced into the neural recordings. While training
on a diverse dataset can hedge against unforeseen occurrences,

Fig. 9. Layout of the designed compression circuit for M = 4 at 1.28 MHz
to support 64 channels in a standard 45-nm CMOS technology.

it will cause the autoencoder to begin performing at a lower
level. In this case, retraining and re-uploading of the autoen-
coder weights to the implementable device may be required.
Techniques for increasing the robustness of autoencoder-based
compression circuits for signals which may change over time
is an open concern.

VI. CONCLUSION

This article presented systems which use trained autoen-
coders for compression and reconstruction of neural signals.
Among various techniques for compressing neural data, our
proposed architectures provide high reconstruction quality of
spikes when only 4 to 32 samples are sent per spike. Using an
autoencoder to compress N data points into an M -length code
requires M ×N multiplications and M × (N − 1) additions,
which makes it as computationally-efficient as most other
previously published methods for the compression of neural
data. We then synthesized the autoencoders using the standard
45-nm CMOS process to confirm that the use of autoencoders
are reasonable in terms of both power consumption and silicon
area. While this article presented the advantages of using
trained compression for neural data, it can also be used
for high-performance processing of specific data across other
biomedical engineering applications.
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