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Abstract

Non-coherent impulse-radio ultra-wideband (IR-UWB) transceivers are attractive candidates for

applications where silicon area and power consumption are relatively limited. This article presents

the compact digital architecture design and implementation of a non-coherent IR-UWB transmitter and

receiver based on the energy detection scheme, including the synchronizer module. The software models

of the designed transceiver are simulated and verified in both floating-point and fixed-point numerical

representations. The synthesizable Verilog description of the transmitter and receiver architectures are

simulated and verified against their fixed-point simulation model. The transmitter and receiver are

implemented on our custom-developed field-programmable gate array (FPGA) board. The bit error rate

performance of the transmitter and receiver is measured in real-time on the FPGA, utilizing an accurate

on-chip Gaussian noise generator. The characteristics and implementation results of the transmitter and

receiver architecture on the FPGA are presented. An ASIC architecture of the IR-UWB transceiver is

estimated to occupy 0.0227 mm2 and dissipate .760 mW from a 1.0-V supply while operating at 82

MHz in a standard 32-nm CMOS technology.

Index Terms– Digital impulse-radio ultra-wideband (IR-UWB) transmitter and receiver, field-

programmable gate array (FPGA), ASIC architecture.

I. INTRODUCTION

The impulse-radio ultra-wideband (IR-UWB) technology [1] supports high data rate wireless

transmission of processed neural data from the implantable device to an external controller
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reliably [2], while requiring relatively low power consumption [3], [4]. The main idea behind

IR-UWB is to generate a very short pulse or electromagnetic wave (few nanoseconds), which

has a very large bandwidth (few GHz), at specific time instants. Since an UWB transmitter

sends signals in short pulses, most of its circuits can be shut off during the time when it is

not transmitting. Moreover, since the minimum energy per bit decreases when the normalized

bandwidth increases, an impulse transmitter can achieve low power consumption as it trades

spectral efficiency for energy efficiency [5]. In IR-UWB, data is encoded by modulating a short

pulse’s position, amplitude, and/or polarity. The multitude of modulation and implementation

options for IR-UWB continue to be investigated [6]. A non-coherent receiver is responsible

for finding and decoding messages, while it alleviates the need for exact synchronization

between the transmitter and receiver, i.e., prior knowledge of the timing of a transmission is not

necessary. Moreover, non-coherent receivers need less information about the channel and can

be implemented with lower complexity compared to coherent receivers [7]. The combination of

the non-coherent reception and short duration of the pulses in the time domain make the IR-

UWB scheme particularly suitable for short range communications with extremely low power

constraints.

Fig. 1a shows the high-level block diagram of the designed and implemented IR-UWB digital

transmitter and receiver over an additive white Gaussian noise (AWGN) channel. The transmitter

Tx is responsible for creating a signal using a bit stream and a template waveform provided as

inputs. The transmitter combines the bit stream with a preamble to create a packet that can be

detected and decoded by the receiver Rx. The signal created by the transmitter is represented as

a series of short pulses in the time domain. The distortion is modeled using an AWGN channel.

The modulated signal from the transmitter (i.e., sequence of pulses) is added to the samples from

the Gaussian noise generator (GNG) and the noise-corrupted signal is passed to the receiver.

The receiver is responsible for taking the noisy signal samples and recreating the bit stream that

was presented to the transmitter. Controlling the operations of the receiver is done by a finite

state machine (FSM).

We first modeled the IR-UWB transmitter and receiver in floating-point representation in

Matlab. The fixed-point representation of the transmitter and receiver is then modeled using

a custom-developed library of parameterizable fixed-point operations in MEX-C. The Verilog

descriptions of the transmitter and receiver are developed and the cycle-accurate bit-true
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Fig. 1: (a) Block diagram of the IR-UWB transmitter and receiver over AWGN channel. (b) Two

binary PPM frames. (c) Packet structure. (d) Datapath of the IR-UWB transmitter.

implementations of the transmitter and receiver are analyzed and verified against the fixed-point

model. The transmitter and receiver are implemented on a custom-developed field-programmable

gate array (FPGA) board hosting a relatively small Xilinx Spartan-6 FPGA. The on-chip bit

error rate performance of the transmitter and receiver using our accurate GNG [8] is measured

in real-time and is compared against the fixed-point software simulation results. The transceiver

architecture is synthesized in a 32-nm CMOS technology and the silicon area, performance, and

power consumption of the transceiver are presented.

The rest of this article is organized as follows. Section II and III present the transmitter’s and

receiver’s descriptions and their compact hardware architectures, respectively. The components of

the transmitter and receiver are individually described and their efficient hardware implementation

is elaborated. Section IV presents the simulation results and implementation characteristics of

the designed IR-UWB transmitter and receiver on a FPGA and also in a standard 32-nm CMOS

process. Section V makes some concluding remarks.
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II. TRANSMITTER AND AWGN CHANNEL

To transmit information, physical properties of the pulses from the transmitter are modified to

reflect the transmission data. The energy to transmit one bit is spread over a series of low-power

pulses grouped together as a pulse train [9]. A pulse train for IR-UWB transmission combines

ultra-short pulses into a collection of pulses that is easier to detect in the time domain. Data is

transferred by manipulating these pulse trains. The collection of pulses that constitute one pulse

train have enough energy to be distinguished from the random channel noise.

Transmitted pulses are modulated using the binary pulse position modulation (PPM) scheme

[10]. Modulating data using the binary PPM scheme involves moving a data pulse train in the

time domain. The pulse train used is a collection of voltage samples used in [11]. The pulse

train is represented as 99 consecutive voltage samples. The data pulse is moved into one of the

two possible pulse train locations that make up one symbol period. For one symbol period Ts,

which composed of 198 consecutive samples, only half of the symbol window will contain data

from the transmitter. Placing a series of sequential pulses at the start of Ts and ending at the

midpoint indicates a zero while placing the train from the midpoint to the end of Ts indicates

a one. Fig. 1b shows an example of two successive PPM symbol periods as transmitted by the

transmitter with Gaussian pulses representing the presence of a pulse train.

The success of the transmission depends on the mutual understanding between the transmitter

and receiver on both the modulation scheme as well as the overall packet structure of every

transmission. The packet structure used for transmitting every symbol is shown in Fig. 1c. The

signal for one complete packet of data is made of four sections. The first section is the preamble,

which is a long train of all zeros to indicate the beginning of a new transmission. The preamble

used in our implementation uses 100 consecutive zeros for detection and synchronization.

The preamble is terminated by the Barker code [12]. The Barker code is an 11-bit sequence

00011101101 used as a start frame delimiter (SFD) following the end of the preamble. The

presence of a SFD indicates to the receiver where the preamble ends and the data to be decoded

begins. The Barker code is followed by the header bits that contain the number of bits in the

transmission data. The header is used to indicate where the receiver should transition between

decoding the current packet and trying to detect the next packet. While the sizes of the first

three blocks are fixed, the length of the transmission data varies based on the number specified
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in the header. The final part of the modulated signal is the transmission data.

The implemented transmitter creates a modulated signal, represented as signal strength values,

to be detected and decoded by the receiver. These signal strength values represent samples taken

from the waveform after a transmitting antenna, but before the corruption that results from the

transmission channel. The transmitter consists of a pulse generator and a packet generator, as

shown in Fig. 1d. The pulse generator contains a series of discrete sample values that make up a

pulse train. The output of the transmitter seen over one symbol period is created by transmitting

the samples taken from a pulse train with a matching number of zero-valued pulses. The block

of zero-valued samples are transmitted at the front or the back of the pulse train based on the

value for the current symbol period provided by the packet generator. The packet generator takes

in the transmission data to combine into a packet structure. A complete packet is formed by

using the packet structure to sequentially fill symbol periods with pulse trains in the appropriate

half of the symbol period.

The transmitter is implemented in hardware by storing pulse samples that are passed to the

transmit antenna in the appropriate time slot. The passing of these pulse train samples is managed

by a FSM that keeps track of the current bit from the packet generator as well as the last sample

passed to the output. The FSM uses counters to manage the current bit position as well as the

current pulse position within the symbol period. The pulse train is made of 99 sample values

that are passed to the output of the transmitter sequentially. The multiplexer in Fig. 1d is used to

pass through either a pulse train sample from the storage location or a zero value. The selection

is determined by the current bit from the packet generator and the value of the counter tracking

the current position within the symbol period. If the current position of the counter is inside the

first half of the symbol period, the SPH (Symbol Period Half) control signal is set low by the

FSM. The use of an XNOR gate allows the multiplexer to pass the sample only if the current

bit matches the value of SPH.

III. NON-COHERENT RECEIVER

The receiver process starts with the detector that finds the preamble at the start of a packet

and decodes all of the data following the preamble. Fig. 2a shows the flowchart of the receiver’s

operations. The receiver is broken into four main stages. The received pulses are first processed

by a correlator after they have been distorted by the channel. The receiver uses an autocorrelation
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function to distinguish the incoming pulses from the received noise. The detector is responsible

for determining if the incoming samples make up the preamble or are just noise from the

channel. The synchronizer is then responsible for finding the boundaries of the symbol period

so the decoder can evaluate the symbol contents. The decoder is responsible for converting the

incoming pulses into a bit stream. The decoding process is broken into finding the Barker code,

decoding the header, and decoding the payload. The output of the receiver, Output Data, is the

generated bit stream of data created by the decoding of the payload.

The structure of the implemented receiver is shown in Fig. 2b. Because the arrival of the

incoming samples is sequential, portions of the structure remain idle while another component

is active and using the incoming data. The process of managing the sequential inputs for the

separate components of the receiver is controlled using a FSM. The FSM is responsible for

deactivating idle components and activating the appropriate components throughout the reception

process to manage the power consumption. Note that the autocorrelator, which is the first stage

of the receiver, is always active regardless of the state of the receiver FSM. The autocorrelated

samples are passed to every component of the receiver as new samples are needed for evaluation

in every block of the reception process. The detector and the synchronizer both contain a sub-

component, referred to as an integration block, used to integrate the incoming samples of the

successive integration windows. The decoder compares the received bit stream with the Barker

code.

A. Autocorrelator

The correlation of a signal involves multiplying the received samples with a template to reduce

the impact of the channel distortion. The suppression of the noise value in the received samples

facilitates a more accurate detection and decoding of the received transmitted data. Our non-

coherent receiver uses the energy detection scheme [13], or an autocorrelation function with a

zero time delay. This process essentially squares all of the input signal samples before they are

processed by the detector. Squaring and integrating the samples collected by the receiver creates

a sequence of energy samples that can be more reliably detected and decoded. Fig. 2c shows the

block diagram of the autocorrelation of input samples passed through an AWGN channel, where

(WI, WF) denotes the number of integer bits WI and the number of fractional bits WF of a signal.

The input to the receiver, Incoming Samples, is an energy sample in the time domain. The corrupted
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Fig. 2: (a) Flowchart of the IR-UWB receiver’s operations. (b) Block diagram of the IR-UWB

receiver. (c) Autocorrelation of received samples.

samples are passed to both inputs of a multiplier to perform an autocorrelation. The link between

transmitter and receiver is improved by using cuteset retiming to shorten a relatively long critical

path delay. Cutset retiming is a transformation technique used to add pipeline registers and/or

change the location of the delay elements without affecting the input/output characteristics of

the design [14]. A cutset intersects a set of edges of a graph such that if these edges are removed

from the graph, the graph becomes disjoint. Cuteset retiming is used to improve the performance

of the transceiver throughout the design.

B. Detector

The detection process runs continuously until a preamble is detected. The detector uses

received energy samples to indicate the presence of the preamble. The detector can find the

consecutive zeros of the preamble because the pulse train for a received zero is always placed

in the first half of the symbol period. The detector uses a series of integration phases to find
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the preamble. As shown in Fig. 3a, multiple integrators are swept over the samples of one

symbol period. Every sample in the symbol period is integrated as a part of multiple overlapping

integration phases. Rather than evaluating one integration phase during a symbol period, all of

the integration phases are totaled during every symbol period. In [13], one integration phase is

totaled during every symbol period. Evaluating every integration phase during one symbol period

means the integration totals are evaluated using fewer symbol periods and a shorter preamble

can be used. Each integration phase is half of one symbol period and spans the time duration

of exactly one pulse train. The integration phases are separated in time by the phase space Tps

=
⌊
Ts

N

⌋
. Increasing the number of integration phases results in a smaller phase space between

phases. As the transmitted pulses are received, overlapping integration phases are processed and

the sum of each integration phase is stored. Integrating the energy samples in a time window

can be used to detect a signal because the phases containing a modulated signal will have higher

integration values than phases only containing noise. The example shown in Fig. 3a would result

in the first integration phase having the highest integration value for that symbol period.
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Fig. 3: (a) Overlapping integration phases. (b) Flowchart of the detection process.

Given that the received signal is a train of zeros during the preamble, the integration phase

with the highest sum should be the same for every symbol period in the preamble. To ensure the

receiver is receiving a train of zeros and not just noise samples, one integration phase must be
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the highest integration phase over multiple symbol periods. The number of successive symbol

periods checked by the detector is determined by two input threshold values. One input threshold

determines how many symbol periods are integrated before the integration phases are compared.

The second input threshold determines how many times the integration phases must be the

highest integration in the comparison. A third input threshold, the reset threshold, determines

how many symbol periods are evaluated before the detection process is restarted.

Fig. 3b shows the flowchart of the detection process where seven bits are used to accumulate

the energy values for every integration phase. After the integration of this group of symbols, the

integration phases are compared. Following every group comparison, the phase with the highest

accumulated energy has the value denoted as Count incremented by one. If a value of Count is

greater than the threshold for detection, the detector indicates the presence of a preamble. The

value of K indicates the number of groups of seven symbols that have been checked so far. If K

is greater than the reset threshold, then the value of K and the values of Count for each phase are

reset to zero. Following this comparison, the process is restarted with the next group of symbols

and the value of K is incremented.

The detection phase uses a relatively small number of integration phases and has a relatively

large phase space between integration phases. Using a smaller number of integration phases is

important for the hardware implementation as it means that fewer integration values must be

evaluated during the detection process. Moreover, the detector can run for extended periods of

time and does not need to accurately return the sample at the start of a symbol period.

Using a pulse train comprised of 99 data samples, the symbol period contains 198 samples.

The detection process evaluates all the symbol periods using 9 integration phases. By using 9

integration windows instead of the 8 used in [13], the phase space is
⌊
198
9

⌋
= 22 samples. Using

this phase space means that the integration phases span the entire symbol period and the first

integration phase always aligns with the first sample of the symbol period. This implementation

simplifies tracking the passing symbol periods as the integration phases are swept over.

The detector incorporates an integrator block responsible for accumulating the incoming

samples from the autocorrelator. At every clock cycle, the integrator block provides the value

of the integration of all the samples that make up one full integration phase. The integration

values for each phase are accumulated using groups NumAve = 7 bits to calculate the maximum

phase. In order to evaluate the integration phases over 7 consecutive bits, the value of each
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integration phase is stored in a rotating shift register. Fig. 4a shows the implementation of the

energy collection component of the detector. The rotating shift register has an index to store a

value for every integration phase. The 6-bit SymbolCounter is used to count the number of symbol

periods that have been integrated. At every subsequent clock cycle, the contents of the shift

register are all shifted down one location. The new input to the top of the shift register is the

addition of the bottom element in the shift register with the newest integration phase from the

integrator block. For the first symbol period in a group, the values from the integrator block are

stored directly in the shift register.
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Fig. 4: (a) Datapath of the energy collection component. (b) Datapath of the detection evaluation.

Fig. 4b shows the datapath of the comparison logic used to establish a detection. The input to

the comparison logic is the newest integration phase from the detection shift register. Following

the integration of a new phase, its value is compared with the current maximum integration phase.

If the value of the top location of the shift register is greater than the current maximum, the

current maximum is overwritten and the current phase count is stored. Following the evaluation

of 7 consecutive bits, the maximum phase over those seven bits is considered the winner for

those symbol periods. In addition to a rotating shift register, the detector also includes an array

for the storage of the count of number of wins for each phase. When a phase is determined to

be a winner, the index matching the current maximum phase register is incremented.

Following every seven bits, the detector then checks if any of the integration phases have

been the maximum integration phase at least 6 times. If one phase has been the highest at least

6 times before 11 checks, then the detector has found the preamble. If the detector successfully

finds the preamble, a control signal is asserted to alert the FSM that it can move forward in the
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reception process. If no integration phase was the maximum integration phase at least 6 times

within the span of 11 checks, then the detection process restarts and the counters tracking the

number of times each phase has been a maximum are reset to zero. The FSM does not disable

the detector until a preamble is successfully identified.

C. Integrator Block

Detection and synchronization are based on evaluating integration phases that contain the

integration of all incoming samples between two points in time. A large number of these samples

need to be integrated as part of multiple overlapping integration phases. Because the integration

phases overlap, a subsequent integration phase will contain one full phase space of new samples

as well as all of the samples from the previous integration, excluding the oldest phase space.

Fig. 5a shows the possible contents of the previous integration followed by the contents of the

current integration. In the integrator block for the detector, the phase space is 22 samples long.

To calculate the current integration window, 22 new incoming samples need to be added while

the 22 oldest samples need to be removed from the total.
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Fig. 5: (a) Subsequent integration phases. (b) Datapath of the integrator block.

Fig. 5b shows the datapath of the integrator block. The samples from the autocorrelator are

first fed into an accumulator. The output of the integrator block is the accumulation of one full

integration phase, which is equal to half of a symbol period or 99 consecutive samples. Thus,

the integrator block needs to be able to manage groups of 22 samples to accommodate the phase

space and 99 samples to produce the accumulation of one full integration window. The integrator

block achieves this by using a rotating shift register to store smaller sub-windows of 11 integrated

samples as well as an output register that keeps a running total. These 11-sample sub-windows

are pushed into a rotating shift register. The rotating shift register accommodates N+1 locations,
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where N is the number of integration phases. Whenever a new sub-window is calculated by the

accumulator, it is added to the running shift register, pushing the older accumulations down one

location. The newest addition to the shift register is added to the current running total at the

output. Element N + 1 of the rotating shift register represents the oldest sub-window and is

subtracted from the running total. The first valid integration phase occurs when the rotating shift

register is filled.

For a compact realization of the integration block, a feedback structure is used to prevent

repetitive additions. The accumulation of overlapping integration phases is done using the result

of the previous integration phase as part of the calculation of the current phase. Although the

latency of the accumulation is increased, the use of the feedback register eliminates redundant

additions, allowing the integrator block to accumulate overlapping integration windows while

remaining compact. At every clock cycle, the integration block updates the output register by

adding the newest sub-window of 11 samples and removing the oldest sub-window at the bottom

of the rotating shift register. This provides a new integration of the incoming samples shifted by

half of the phase space. At every clock cycle, the oldest samples are removed form the running

total while the newest samples are added, preventing the redundant additions. Every push onto

the shift register covers half of one phase space so the result of adding the newest value with

the feedback value creates a valid integration of one window every other clock cycle.

When the integrator block is first started, the accumulator must complete N sub-windows for

the output register to contain the integration of the samples of one complete integration window.

This point is where the counter in the detector is started as it evaluates a number of consecutive

symbol periods. Following the initial filling of the rotating shift register, the integrator block

provides integration values for the overlapped integration windows every second clock cycle.

D. Synchronization

After a successful detection, the synchronization stage is started immediately. The accuracy

of decoding the transmitted data is largely dependent on the synchronizer’s ability to estimate

the boundaries of the symbol period. The synchronization process uses a series of overlapping

integration phases over the preamble to attempt to find the beginning of a transmitted bit

[15]. Fixing the preamble waveforms at the start of the symbol period allows the receiver to

establish the start of each transmitted bit. Synchronization follows a process similar to the energy
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integration process shown in the detection phase. Synchronization uses the integration process

seen in Fig. 3a, but when compared to detection, the phase space is considerably smaller and

more integration phases are used per symbol period. During the synchronization stage, integration

windows cover series of preamble bits with the aim of finding the integration phase with the

highest energy. The integration phase with the most energy accumulated over the preamble is

most likely the closest to encompassing the entire modulated waveform in a symbol period. The

synchronization stage gives a much better approximation of the start of the symbol period by

using several more integration phases. Having a high number of integration phases means that

the phase space is smaller and the integration phase is more likely to align with a symbol period.

The process of synchronization is shown in Fig. 6a. Unlike the detection stage, which runs

until a preamble is found, the synchronization stage always occurs over a constant number of

symbol periods. The maximum integration phase is evaluated after every symbol period for a

number of symbols determined by an input parameter. In our implementation, integration phases

are evaluated over 22 preamble bits to find the start of the symbol period.

� � � �

�

����	
�������
�


�����	����������

����� �����

�

�

��


������

�

�

�

�

�

�������������	

�����������

������������
�


�����

�����	���������

 	��!��"#
$�%�

&'&(�

)��

��

&*

"#���

+���

(a)

����

�����

	�
����

�����������

�����

����

����

������

�����

����������

������

������

���
���

���

�������

�������

�
������

����

�

������

�����

��������� �����

!"#$%

&'$()*

!)#$%

!"#$%!)#$%

(b)

Fig. 6: (a) Flowchart of the synchronization process. (b) Datapath of the synchronizer.

Similar to the detector, the synchronizer pairs an integrator block with a rotating shift register

to maintain values for integrated windows. The number of integration phases was increased from
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32 as used in [13] to 33 to make the repetition of the first integration phase align with the start of

the next symbol period. Using 33 integration phases, the integrator block contains 34 locations,

each for half a phase space. Fig. 6b shows the datapath of the synchronizer. The synchronizer

is run for a set number of symbol periods Synch Bits, indicated as an input. The synchronizer

tracks the number of symbol periods that have elapsed by using a phase counter to increment the

Symbol Counter . The synchronizer also includes a register to keep the current maximum value as

well as phase of the integration windows as they are pushed into the shift register. Following the

integration of 22 symbol periods, the synchronizer then indicates the integration phase with

the maximum value. When the value of Symbol Counter matches Synch Bits, the synchronizer

continues to increment the phase counter until the phase counter matches the value of the register

containing the index of the maximum phase, Waste Cycles. When the comparison is successful,

the synchronizer indicates to the FSM that the reception is now synchronized to the start of the

symbol period.

E. Decoder

The decoder is started by the FSM immediately following the indication of the completion

of the synchronization. The decoding process is done by integrating over only two integration

windows to span the symbol period. The integration windows are separated into the first and the

second half of the symbol period, as shown in Fig. 7a. The integration for decoding begins at

the start of a symbol period, which is estimated by the synchronizer. After integrating one full

symbol period, the integration values are compared and a new binary value is added into the

data array. Following binary PPM, a higher integration in the left window indicates a zero and

a higher integration in the right window indicates a one.

Fig. 7b shows the datapath of the decoder. The decoder uses two accumulators to integrate

the first and second half of a symbol period for comparison. The multiplexers placed before

the registers in the datapath allow one of the accumulators to effectively be switched off for a

period of time. By tying the autocorrelator output to alternating terminals of the multiplexers,

one select line can be used to determine which accumulator receives incoming samples while

the other stores its data by continuously adding a zero value. The FSM tracks a sample number

used to determine which register receives new values from the autocorrelator to be accumulated.

The sample counter in the FSM is also used to extract the result of the comparator when a full
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Fig. 7: (a) Two integration windows for decoding. (b) Datapath of the decoder. (c) Logic for

comparing decoded bits with the Barker code.

symbol period has been accumulated. The decoder continuously creates an output bit stream

until the FSM deactivates the decoder. The FSM maintains a register bank that matches the

length of the maximum number of bits in the payload. As the decoder generates bits, these bits

are pushed into a register that holds the decoded data. The integrators and comparator in the

decoder provide the FSM with a bit stream of decoded data.

When the decoder is first activated, so is a sub-component of the decoder that receives the

output bit stream and looks for the Barker code. The decoder fills the data array from the least

significant bit and the array is compared with the Barker code array following the integration

of every symbol period. The sub-component to find the Barker code compares the last 11 bits

decoded by the decoder with the known Barker code. The logic used to make the comparison

of the decoded bit stream with the Barker code is shown in Fig. 7c. The output of this gate

configuration goes high only when all eleven bits match the input SFD bits. While this sub-

component is active, the FSM keeps track of the number of bits added to the bit stream that
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are compared with the input SFD. This sub-component continues to run until the Barker code

is found or there is a timeout. If the Barker code is found, the sub-component looking for the

SFD is deactivated while the decoder continues to run. If the Barker code is not found before

the timeout, the FSM stops the decoder and restarts the detector.

The Barker code indicates the end of the preamble and the start of the payload header. The

header is decoded using a similar process to the Barker code. Following the positive indication

to the FSM generated by the logic shown in Fig. 7c, the integrators are used to fill a data array

with a length specified as a parameter to the receiver. The process of decoding the header uses

the same two integration windows, but stops after the number of symbols indicated by the input

parameter. The decoder uses the number of bits to repeat the energy collection process to decode

the payload. When the payload is decoded, the receiver returns to the detection phase to look

for the next transmission.

IV. PERFORMANCE EVALUATION AND FPGA IMPLEMENTATION RESULTS

We modeled the IR-UWB transmitter and receiver in both floating-point and fixed-point

representations in Matlab/C as well as in a fully-parameterizable synthesizable Verilog hardware

description. We used a library of custom developed, parameterizable fixed-point operations. Fig.

8a shows the bit error rate (BER) performance of the transmitter and receiver over a range

of signal-to-noise ratio (SNR) values modeled in software as well as the results of the FPGA

simulation. We used our custom-developed FPGA board hosting a relatively small Spartan-6

Xilinx FPGA. The BER performance is evaluated using our on-chip accurate and scalable GNG

presented in [8]. The hardware results are created using the fractional bitwidths of components

as depicted in their respective figures with no component ever keeping more than 5 fractional

bits. Fig. 8b shows the BER performance of the receiver for various numbers of fractional bits.

While using a smaller number of fractional bits will reduce the size of the transmitter and receiver

architecture, the use of fewer fractional bits causes a degradation in the error rate performance,

as shown in Fig. 8b.

Table I gives the characteristics and implementation results of the IR-UWB transmitter and

receiver on a Spartan-6 FPGA. The size of this implementation is based on maintaining 5 bits

of fraction in the receiver’s modules. Tables II and III give the power consumption and the

silicon area of the transmitter and receiver, respectively, synthesized in a standard 32-nm CMOS
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Fig. 8: (a) BER performance of the designed IR-UWB transceiver in software and implemented

on a Spartan-6 FPGA. (b) BER performance of the implemented IR-UWB transceiver for

different fractional bitwidths. (c) Chip layouts of the IR-UWB transmitter and receiver in a

32-nm CMOS technology.

process. The power consumption was measured after place and route using IC Compiler by

synopsys. The receiver is about seven to eight times the size of the transmitter and consumes

about six times more power at 82 MHz from a 1.0-V supply. Fig. 8c shows the chip layouts of

the transmitter and receiver.

To the best of our knowledge, the only other reported digital implementation of an IR-UWB

transmitter and receiver in a 90-nm CMOS technology in [16] dissipates 222 µW from a 1.0-V

supply and occupies 30,800 µm2 while operating at a relatively low frequency of 15 MHz. Our

digital receiver achieves an improved BER performance by using a BPPM modulation scheme

and reduces the transmitter power dissipation by using a parallel energy collection scheme during

detection and synchronization. The presented non-coherent IR-UWB transmitter and receiver

architectures were utilized in the design and implementation of our secure code-shifted reference
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UWB transceiver in [17].

TABLE I: Implementation Characteristics of the IR-UWB Receiver on a Spartan-6 FPGA

Module Slice LUTs Regs. DSP48s Freq. (MHz)

Transmitter 171 (2%) 105 (0.9%) 0 (0%) 173

Detector 224 (3%) 229 (2%) 2 (12%) 142

Synchronizer 160 (2%) 231 (2%) 2 (12%) 197

Integrator 67 (1%) 90 (.07%) 1 (6%) 82

Decoder 143 (2%) 102 (0.8%) 1 (6%) 257

Receiver 621 (10%) 687 (6%) 4 (16%) 82

TABLE II: Power Consumption of the Synthesized IR-UWB Transceiver in a 32-nm CMOS

Process

Power (µW) Transmitter Receiver

Total Dynamic Power 36.1 228.6

Cell Leakage Power 59.5 436.1

Total Power 95.6 664.7

TABLE III: Silicon Area of the Synthesized IR-UWB Transceiver in a 32-nm CMOS Process

Area (µm2) Transmitter Receiver

Interconnect Area 419 4000

Cell Area 2522 18031

Total Area 2941 22031

V. CONCLUSION

The digital implementation of a non-coherent impulse-radio ultra-wideband (IR-UWB) trans-

mitter and receiver was demonstrated. Utilizing a non-coherent transmitter and receiver reduced
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the design complexity by alleviating the need for the transmitter and receiver to be perfectly

synchronized in time with compact detection and synchronization stages. The receiver uses

the energy collection scheme to find and to synchronize with incoming transmissions before

decoding data. A finite state machine controlled the enabling and disabling of various components

preventing them from idly consuming power while not having valid input on which to perform

operations. Our compact architecture proposal for the integration block allows the integration of a

variable set of integration windows using only three adders. The bit error rate performance of the

transmitter and receiver implemented on the field-programmable gate array (FPGA) over a range

of signal-to-noise ratio values were verified against the software models of the transmitter and

receiver implemented in Matlab/C in double-precision floating-point and fixed-point formats.

The transmitter and receiver used about 12% of the configurable resources, and 16% of the

DSP48 blocks, and run at 173 MHz and 82 MHz, respectively, on a relatively small Spartan-6

FPGA. This is equivalent to a chip area of 0.0227 mm2 in a standard 32-nm CMOS process, as

estimated from chip synthesis.
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