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Abstract—We present an ultra-compact and fast hardware
simulator for Rayleigh and Rician fading channels. To ensure
numerical robustness and an efficient mapping onto hardware,
the fading simulator uses the sum-of-sinusoids technique with
N = 32 sinusoids added up to model each fading path. Fading
samples are generated at a low rate and then are passed to
an interpolator, which computes the final samples at the desired
baseband rate. We propose a new time-multiplexed datapath that
uses a differential approach. Instead of generating the fading
samples directly, the datapath generates the discrete difference
between fading samples. The proposed simulator is so compact
that an entire 4 × 4 MIMO (multiple-input multiple-output)
fading channel can be implemented on a small fraction of
a single field-programmable gate array (FPGA). On a Xilinx
Virtex-4 XC4VLX200-11 FPGA, up to 1184 different paths can
be implemented simultaneously while generating 1184 × 342
million 2 × 16-bit complex-valued fading samples per second.

I. MOTIVATION

Simulating the effect of fading channels is a key step
in the design and verification of wireless communication
systems. It is generally easier and thus more common to
design a fading channel simulator in software rather than
in hardware. However, accurate simulation of radio channels
is a computationally-intensive process and, indeed, software
simulation has become a serious bottleneck to timely de-
sign and verification. Hardware-based simulators have shown
several orders of magnitude of speed-up over software-based
simulators [1], [2]. Speed is an increasingly important advan-
tage when many different scenarios must be simulated over
large variety of operating conditions. For example, emerging
wireless standards, such as long term evolution (LTE), support
MIMO (multiple-input multiple-output) technology and over
300 modes of operation that need to be verified [3].

Commercially-available fading channel simulators are rather
bulky and costly. These simulators are standalone units that
provide the fading signal in the form of analog signals or
digital samples [4]–[6]. Internally, hardware-based simulators
all appear to use digital hardware, such as field-programmable
gate array (FPGA) devices, to simulate fading channels (for
example see [7]–[11]).

In this article, we propose a new compact and accurate
fading simulator that can be used for cost-effective and flexible
simulation of different fading scenarios ranging from simple
Rayleigh and Rician channels to the most complex multipath

MIMO communication systems. The implemented hardware
is based on the sum-of-sinusoids (SOS) channel model [12]
where the fading process is formed by superimposing sinu-
soidal waveforms with amplitudes, frequencies and phases that
are selected appropriately to generate the desired statistical
properties. Our fading simulator is small enough that it can
be integrated with the rest of the communication system on a
single FPGA.

For an especially compact hardware implementation that
supports a large number of propagation paths, we propose a
differential sample generation scheme. In this method, instead
of generating fading samples directly, the discrete difference
between subsequent fading samples are generated at a low
sample rate using a time-multiplexed datapath. To increase the
efficiency and to provide the target sample rate, we propose
an optimized linear interpolator using a simple multiply-
accumulate unit. Direct implementation of the SOS-based
fading channel model can lead to reduced accuracy when a
large range of Doppler frequencies must be modeled. This
is due to the fact that in a typical wireless communication
system, the Doppler frequency is significantly smaller than the
signal sample rate. Therefore, the ratio of these two values,
which is used in SOS-based models, is a relatively small value
that requires a large number of fractional bits for an accurate
fixed-point representation in a hardware implementation of
the fading channel simulator. With the proposed technique,
the statistical accuracy of the fading simulator is guaranteed
provided the Doppler frequency is kept within a certain range.
Using our proposed techniques, a relatively large number of
independent streams of fading samples can be parameterized
separately to simulate different propagation conditions. There-
fore, various fading scenarios, such as single and multipath,
Rayleigh and Ricean fading channels for single and multiple
antenna communication, can be simulated on a single FPGA.
While the generated fading samples are correlated in time,
the fading channel simulator is also extended to model spatial
correlation between antennas as well. To ensure the most
compact possible design, we developed a set of fixed-point
arithmetic and logical libraries in Mex-C [13]. We empirically
minimized the wordlength of signals and the size of the on-
chip memories using bit-true fixed-point simulations of the
fading channel simulator.

The rest of this article is organized as follows. In section II



we briefly review the SOS fading channel models. Section III
presents our modified and optimized fading channel model
for generating multiple streams of statistically-independent
fading processes. Section IV describes an especially compact
FPGA simulator design. We also propose a datapath for
converting Rayleigh samples into Rician samples. Multiple
streams of Rayleigh (or Rician) samples are then combined
to simulate different fading channel scenarios. In Section V
independent fading paths are used to efficiently implement a
4 × 4 MIMO fading channel simulator. We then extend this
design in Section VI to generate spatiotemporallay-correlated
fading sequences. Fixed-point simulation results are presented
in Section VI. Finally, Section VII makes some concluding
remarks.

II. OVERVIEW OF FADING CHANNEL MODELS

Various fading channel simulators based on SOS models
have been proposed over the last four decades [14]–[16].
Unfortunately, some of the proposed models, such as the
Jakes’ simulator [17] and both its deterministic and stochastic
variations, have undesirable statistical inaccuracies. For exam-
ple, the correlation functions can deviate significantly from
those of the theoretical model [18]. Also, some proposed
models require a relatively large number of sinusoids to
produce multiple uncorrelated fading processes [19], [20]. An
improved deterministic SOS-based fading channel model for
multiple uncorrelated Rayleigh fading channels was proposed
in [21]. Comparative analyses of the popular SOS-based
models can be found in [22]–[24]. It was concluded in [22]
that the statistical SOS model in [25] has superior properties
compared to the other SOS-based models. Although more
statistically accurate, the model in [25] is not ergodic, i.e.,
the time-averaged statistical properties do not converge to the
ensemble-average. This implies that multiple simulations runs
are required in order to produce accurate fading results. The
authors in [9], [10] proposed a modified version of Wu’s model
[26]; however, we found that this model is also not ergodic.
The model in [25] was further improved in [23] (and later in
[11]) to provide more accurate statistics even when averaged
over one simulation trial. We utilize the model in [11] for
hardware implementation as it provides superior accuracy 1

and its time-averaged statistics match its ensemble-averaged
statistics. In this fading model the statistical properties of
the generated fading samples are improved by using random
processes (RPs) instead of random variables (RVs) that remain
fixed after initialization [25]. In this model, each complex
discrete-time Rayleigh fading process is described as

c[m] = ci[m] + jcq[m], (1)

1With similar settings to Wu’s paper [26], we tested the model in [11] and
found that the mean-squared-errors (MSEs) of the autocorrelation function for
the in-phase and quadrature components were 2.611 × 10−6 and 3.650 ×
10−6, respectively, which are actually lower than the values reported in [26].
Also, the MSEs of the cross-correlation functions of the intra- and inter-faders
were 5.386 × 10−5 and 3.298 × 10−5, respectively, which are again lower
than the values reported in [26].

where

ci[m] =

√
2
N

N∑
n=1

cos
(
2πfDTs cos(αn[m])m+ϕn[m]

)
, (2)

cq[m] =

√
2
N

N∑
n=1

cos
(
2πfDTs sin(αn[m])m+ψn[m]

)
, (3)

and

αn[m] =
2πn− π + θ[m]

4N
, n = 1, · · · , N. (4)

Here, m = 0, 1, 2, · · · is the discrete time index, fD is the
maximum Doppler frequency for any path, T s is the symbol
period, αn[m] is the angle of arrival of the n-th sinusoid,
and ϕn[m] and ψn[m] are the phases of the in-phase and
quadrature components, respectively, of the n-th sinusoid.
The ψn[m], ϕn[m] and θ[m] are mutually-independent and
uniformly-distributed random walk processes over [−π, π), for
all n.

The motivation behind choosing random walk processes
(RWPs) to generate the sinusoid parameters [27] is based on
the observation that in an isotropic scattering environment, the
angle of arrival changes slowly and continuously. Thus when
sampled, the angle of arrival should resemble a RWP [28].
Hence θ, which is uniformly distributed over [−π, π), should
be a highly correlated random process rather than a sequence
of uncorrelated uniformly-distributed random variables. More-
over, the behavior of fading channels should change only
slowly between consecutive blocks of transmitted symbols.
Hence the phase parameter of a sinusoid should also be highly
correlated and should not change randomly. Therefore, our
improved fading model uses slowly-changing RWPs for both
ϕn and ψn.

Rician fading samples can be obtained from Rayleigh fading
samples by superimposing a term representing line-of-sight
(LOS) propagation (or the presence of a strong specular path).
This term is commonly assumed to be either a non-zero
constant [29], or time-varying and deterministic [30], or time-
varying and stochastic [31]. In this article we assume that
the LOS term is a time-varying and stochastic process as this
assumption produces a more accurate channel model [32]. The
resulting Rician fading channel model is expressed in discrete
time as follows:

r[m] = ri[m] + jrq[m], (5)

where

ri[m] =
ci[m] +

√
K cos

(
2πfDTs cos(θ0)m+ φ0

)
√
K + 1

, (6)

and

rq[m] =
cq[m] +

√
K sin

(
2πfDTs cos(θ0)m+ φ0

)
√
K + 1

, (7)

where the Rice factor K is the ratio of the power of the LOS
(or specular) component to the scattered power, and c i[m] and
cq[m] are given by (2) and (3), respectively. Also, θ0 and



φ0 are the angle of arrival and the initial phase of the LOS
component, respectively, which are uniformly distributed RVs
over [−π, π).

An important point to note is that the number N of
component sinusoids has a significant impact on the statistical
properties of the generated fading samples. For small N , the
components of the generated complex samples deviate from
the ideal Gaussian distribution, and hence the magnitude of the
fading samples deviates from the ideal Rayleigh distribution.
As N increases, the orthogonal components of the gener-
ated samples become increasingly Gaussian according to the
Central Limit Theorem. Therefore, it is important to include
enough sinusoids for the fading simulation to have an accurate
sample distribution. However, increasing the number N of
sinusoids directly increases the computational requirement of
the fading channel model, especially when many propagation
paths needs to be supported (e.g., multiple antennas systems
over frequency-selective fading channels). Therefore, it is
important to find a computationally-efficient and compact
design for the accurate and efficient implementation of fading
channels.

III. OPTIMIZED FADING CHANNEL MODEL FOR

EFFICIENT HARDWARE IMPLEMENTATION

In a typical wireless communication scenario, the Doppler
frequency fD is significantly smaller than the signal sample
rate Fs = 1/Ts. This allows us to design much of the fading
channel simulator at a much lower sample rate and thereby
reduce the required hardware resources. The resulting low-rate
signal can then be interpolated to achieve the desired output
sample rate. To be able to use a simple linear interpolator,
the signal bandwidth must be small enough so that the fre-
quency response of the interpolator does not have a significant
impact on the statistics of the generated samples. If not
attenuated considerably, the unwanted image signals resulting
from upsampling will significantly affect the level-crossing-
rate (LCR) and average fade duration (AFD) properties of the
fading samples. Given the crucial importance of the LCR and
AFD for accurate simulation of wireless links, it is necessary
to make these properties match the reference model. Our
simulation shows that if the unwanted image signals are kept
at least 80 dB less than the signal (fading sample) level, their
effect would be negligible on the LCR and AFD properties
in the practical signal (data) range. More specifically, if the
initial sample rate F̂s in the SOS stage is larger than 64× fD

(equivalently, the initial sample time T̂s < [64 × fD]−1), a
simple linear interpolator can sufficiently attenuate the image
signals with no significant effect on the desired signal.

We first alter the representation of the fading model to
make its implementation more efficient. It is convenient if all
pseudorandomly-generated variables fall between 0 and 1. To
this end we can rewrite (4) as

αn[m] = 2π
(

1
4N

(n− θ̂)
)
, n = 1, · · · , N (8)

where θ̂ ∈ [0, 1). We define α̂n[m] = αn[m]/(2π), ϕ̂n[m] =
(π + ϕn[m])/(2π) and ψ̂n[m] = (π + ψn[m])/(2π) to
normalize these variables to the range [0, 1). Note that adding
π to a random phase does not change its statistical properties.
From (8) it can be verified that α̂ lies within [0, 1/4), for
all n. Consider the function f(x) = 64 × (fD/F̂s) sin(2πx),
for x ∈ [0, 1/4). Since we chose F̂s ≥ 64 × fD, the value of
f(x) is limited to the range [0, 1]. Also, we define the function
g(x) = cos(2πx). With the above definitions, summation (2)
at sample rate F̂s can be written as

ći[m] =

√
2
N

N∑
n=1

g
(
f
(1
4
− α̂n[m]

)m
64

+ ϕ̂n[m]
)
. (9)

Note that the inner cosine function in (2) is obtained from f(·)
using the identity cos(2πx) = sin(2π(1/4 − x)).

Since process α̂n[m] is highly correlated and changes only
slowly with time, one can further simplify the implementation
of (9). More specifically, we can write

f
(1
4
− α̂n[m]

)
m ≈ βin[m] =

m∑
ḿ=1

f
(1
4
− α̂n[ḿ]

)
. (10)

Note that βin[m] can be written in recursive form as βin[m] =
βin[m− 1] + f(1/4 − α̂n[m]) with βin[−1] = 0. As one can
verify in simulation, this modification replaces the repeated
multiplications with a running sum with negligible impact
on the statistical properties. With similar modifications to
cq[m], simplified summations for the in-phase and quadrature
components can be written in discrete time as follows:

ći[m] ≈
√

2
N

N∑
n=1

g
(
βin[m]/64 + ϕ̂n[m]

)
, (11)

and

ćq[m] ≈
√

2
N

N∑
n=1

g
(
βqn[m]/64 + ψ̂n[m]

)
, (12)

where βqn[m] is defined recursively as βqn[m] = βqn[m −
1] + f(α̂n[m]) with βqn[−1] = 0.

Fading samples generated at the slower sample rate F̂s are
then oversampled and interpolated I times to provide samples
at the output rate Fs = I× F̂s. Since we chose F̂s ≥ 64×fD,
a linear interpolator can be used effectively for this purpose.
Specifically, the interpolator output at time mI + i, for m =
0, 1, 2, · · · and i = 0, 1, · · · , I − 1, is given recursively as

y[mI + i] =

(
y[(m+ 1)I] − y[mI]

)
i

I
+ y[mI]

=
i∑

j=0

y[(m+ 1)I] − y[mI]
I

+ y[mI]. (13)

To simplify the hardware implementation, we constrain the
interpolation factor I to be a power of 2, i.e., I = Fs/F̂s = 2k,
where k = �log2(Fs/64fD)� and �x� denotes the largest
integer number that is smaller than x. In this case, the
interpolator (13) can be implemented without multiplications
or divisions. Note that the interpolator requires the discrete



difference between two subsequent low-frequency samples. In
addition, since the difference is a linear and time-invariant
operation, it can be performed before adding in any Rician
specular component. The discrete difference signal for the
Rayleigh in-phase component in (11) is thus

di[m] =
N∑

n=1

g
(βin[m]

64 + ϕ̂n[m]
) − g

(βin[m−1]
64 + ϕ̂n[m− 1]

)
√
N/2

.

(14)
By substituting (14) into (13), one can verify that the in-
phase Rayleigh fading samples in (2) at sample rate Fs can
be approximated by

ĉi[mI + i] = ći[0] +
m−1∑
ḿ=0

di[ḿ] + 2−kdi[m]i

= ći[0] +
m−1∑
ḿ=0

di[ḿ] + 2−k
i∑

j=1

di[m]

= 2−k
m∑

ḿ=0

i∑
j=1

di[(ḿ+ 1)I] + ći[0], (15)

where m = 0, 1, 2, · · · and i = 0, 1, · · · , I − 1. Equation
(15) shows that with the above modifications, the interpolation
operation can be simplified to a discrete difference and an
accumulation.

Next, the discrete difference of the LOS component is added
to the Rayleigh fading samples. The discrete difference signal
for Rician samples can be written as

si[m] =
1√

1 +K
di[m] +

√
K

1 +K

(
g(λ[m])− g(λ[m− 1])

)
,

(16)
where λ[m] =

∑m
ḿ=1(η/64) + φ̂0, φ̂0 = φ0/(2π), and

η = 64 × (fDT̂s) cos(θ0). The in-phase component of the
final Rician samples are interpolated with an accumulator as
follows:

r̂i[mI + i] = 2−k
m∑

ḿ=0

i∑
j=0

si[(ḿ+ 1)I] + ŕi[0], (17)

where ŕi[0] = (ći[0] +
√
Kg(φ̂0))/

√
1 +K. The interpolated

quadrature component r̂q[mI + i], for m = 0, 1, 2, · · · and
i = 0, 1, · · · , I − 1, can be calculated similarly. An effi-
cient hardware design for an especially compact and high-
throughput simulator based on the above simplified fading
channel model is described in the next section.

IV. IMPLEMENTATION OF THE FADING CHANNEL

SIMULATOR

Without loss of generality, we explain the simulator design
for 32 channels with each channel providing Rayleigh fading
with N = 32 component sinusoids. The architecture of our
fading simulator consists of two cascaded stages. In the first
stage, the complex sinusoids are generated at the sample rate
F̂s. Since F̂s is much slower than the target sample rate Fs,
a common data path can be time-shared to interleave the
calculations for different paths. In the second stage every

low-speed stream of fading samples is interpolated with a
dedicated interpolator. This way, the low-speed calculations
are performed more efficiently with the least amount of
hardware.

For a more compact hardware implementation, the random
processes θ̂, ϕ̂n[m] and ψ̂n[m] are updated according to a
modified version of the algorithm described in [11]. Instead of
updating the RP values every clock cycle, without significant
loss in final accuracy, we update their values every l clock
cycles, where 1 < l ≤ L. In this case, we use a time-
overlapped approach where one simulation trial is divided
into shorter intervals, each of length L time units (e.g., clock
cycles).

The proposed updating procedure for random processes is
given in Algorithm 1. In this algorithm, χ denotes one of the
above RPs and uχ is a random variable with independent,
uniformly-distributed samples over [0, 1). The coefficient ξ
is chosen to be small enough to produce highly correlated
processes. Some suitable values for ξ were suggested in [23].
The step size δχ for each random walk process is the product
of ξ, a second coefficient

√
l used to compensate for the missed

update cycles, and a generated uniform sample uχ[m]. As
shown on line 3, the product ξ

√
l is replaced with the nearest

power-of-2, 2−�log2(ξ
√

l)�, to replace multiplications with shift
operations. Lines 5 and 6 ensure that the process χ[m] remains
within the range [0, 1].

Algorithm 1 The updating procedure for random process χ[m]

1: Initialize: 0 < ξ � 1; d =
⌊
log2(ξ

√
l)

⌋
; sχ = 1; χ[0] ∈

U(0, 1); uχ ∈ U(0, 1);
2: for (m = 0, 1, 2, · · · ) {
3: δχ = sχ · (2−d × uχ[m]);
4: χ[m] = χ[m − 1] + δχ;
5: if (χ[m] > 1)

{
χ[m] = 1; sχ = −sχ;

}
6: if (χ[m] < 0)

{
χ[m] = 0; sχ = −sχ;

}
7:

}

Algorithm 1 allows us to share the same functional units for
updating three RPs θ̂[m], ϕ̂n[m] and ψ̂n[m]. Figure 1 shows
the datapath for updating the RPs θ̂[m], α̂n[m], ϕ̂n[m] and
ψ̂n[m]. The initial values of three RPs α̂n[m], ϕ̂n[m] and
ψ̂n[m] are stored in three block memories “RAM α”, “RAM
ϕ” and “RAM ψ”, respectively, in Q(16,15) format (i.e.,
word length = 16 and fraction length = 15) each of depth
1024 (i.e., for 32 paths each using 32 sinusoids). Also, 32
values of θ̂ are stored in the dual-port distributed memory
“RAM θ” in Q(16,15) format. The RPs θ̂[m], ϕ̂n[m] and
ψ̂n[m] are updated according to Algorithm 1 and the value
of RPs α̂n[m] are updated as α̂n[m] = (n − θ̂)/(4N), for
n = 1, 2, · · · , N . Note that the updated values of these four
RPs are calculated sequentially using time-shared arithmetic
resources but distinct memory locations, as shown in Fig. 1.
A fading variate generator must create long periods of non-
repeating propagation conditions to evaluate accurately the
error-rate performance of the communication system under



evaluation. To ensure this, we use a combined linear pseudo-
random number generator (PNG) [33] that has a very long
period and substantially better randomness and correlation
properties compared to conventional linear PNGs.
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Fig. 1. Datapath for generating the random processes.

Figure 2 shows the proposed datapath for calculating the
sequences of differences, di[m] and dq[m]. The function f(x),
for x ∈ [0, 1/4), is precomputed and quantized in Q(16,15)
format in 1024 steps and stored in “ROM f”. To calculate
the sine function, the value of α̂n[m] is passed to “ROM f”
after proper bit selection. To calculate the cosine function,
the reformatted α̂n[m] is first passed through a negation
circuit and then passed to “ROM f”. Through bit-true fixed-
point simulations we found that the particular fixed-point
representation of βin[m] and βqn[m] has a great impact on the
output statistics. Specifically, we found that the Q(22,15)
fixed-point representation provides enough accuracy for our
purposes. 2048 = 2 × 32 × 32 values of βin[m] and βqn[m]
are stored in dual-port block memory “RAM β”. The β in[m]
and βqn[m] values are updated using adder “add1”, according
to (10), after reformatting the f(·) values from Q(16,15)
to Q(22,15). Moreover, ϕ̂n and ψ̂n from two-port block
memories “RAM ϕ” and “RAM ψ” are used to compute phases
in (11) and (12) after proper bit selection.

In Fig. 2, “cos module” provides g(x) = cos(2πx) values
for two inputs from a look-up table. According to our fixed-
point simulations, to ensure acceptable statistical accuracy, the
look-up table for g(x) in Q(16,15) format should have at
least 4096 entries (requiring 12-bit addressing). For a more
efficient implementation, only the first quarter cycle of g(x),
i.e., x ∈ [0, 1/4), is stored in an on-chip block memory.
For x ∈ [1/4, 1), we can find the corresponding values of
g(x) based on the values from the first quarter cycle. The
outputs of the “cos module” are then passed to accumulators
“add4” and “add5” to compute scaled copies of (11) and
(12). The outputs of “add4” and “add5” are then passed to
“sub1”, which computes the corresponding differences d i[m]
and dq[m] (see (14)) in Q(20,15) format. After scaling and
proper bit selection, 32 values of di[m] and dq[m] are stored
in a distributed memory of depth 64 = 2 × 32 in Q(16,15)
format.

The specular component is added to the Rayleigh samples
using the datapath shown in Fig. 3. Here, N = 32 values of
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Fig. 2. Datapath for generating Rayleigh fading samples.

Fig. 3. Datapath for converting Rayleigh fading samples into Rician fading
samples.

η = 64 × (fD/F̂s) cos(θ0) are stored in single-port memory
“ROM η” and used to update the λ values stored in memory
“RAM λ” in Q(22,15) format. Memory “RAM λ” is initial-
ized with φ̂0 values. The “sin/cos module” reads the sine or
cosine of the λ for the specular component (see (6) and (7))
from a look-up table. Memory “ROM K” holds 64 = 2 × 32
values of 1/

√
1 +K and

√
K/(1 +K) in Q(16,15) format.

Multiplier “mul1” performs the four multiplications required to
calculate si[m] and sq[m] (see (16)). Adder/subtracter “add2”
accumulates different components of (16) the result of which,
after proper bit selection, is stored using format Q(16,15)
in distributed memory “RAM s” of depth 64 = 2 × 32.

The datapath of the interpolator is shown in Fig. 4. Note
that one interpolation branch is dedicated to every in-phase
and quadrature stream of samples (64 = 2 × 32 interpolation
branches in total). Each interpolation branch consists of a 24-
bit accumulator and a register that holds the input signal for
an interval of I samples (see (13)). Data from memory “RAM
s” is read and stored in these registers with specific timing. A
decoder circuit selects which interpolator branch should store
the present output data from “RAM s”. The interpolator circuit



Fig. 4. Datapath for interpolation.

generates the final 32 streams of independent complex Rician
fading samples at the desired output sample rate.

We implemented our fading channel simulator on a Xilinx
Virtex-II Pro XC2VP100-6 FPGA. As in our example simu-
lator, we configured the hardware to generate 32 independent
streams of Rician fading samples using N = 32 sinusoids for
each stream. For each fading stream, our FPGA implemen-
tation uses 2151 of the 44096 configurable slices (4%), only
one of the 444 dedicated 18×18 multipliers (< 1%), and nine
of the 444 on-chip memory blocks (2%). When implemented
with one clock source, our fading generator can generate up
to 32×224 million 16-bit complex-valued fading samples per
second. Note that the final sample rate of the fading simulator
depends on the maximum speed of the interpolator if different
clock sources are used for the first (wave superposition) and
second (interpolation) stages. When implemented with two
clock sources, this figure rises to 32 × 276 million samples
per second, which is the maximum speed of the interpolation
circuit in Fig. 4.

Table I summarizes the characteristics of the new fading
simulator along with those of the fading channel simulators
in [23] and [11]. Note that the proposed fading simulator
is more accurate (32 sinusoids versus 8 sinusoids), 18 times
smaller (in terms of the number of slices), and 37% faster
than the previous design in [11]. We also implemented the new
fading simulator on a Xilinx Virtex-4 XC4VLX200-11 FPGA.
The hardware was configured to generate 1184 = 37 × 32
independent streams of Rayleigh/Rician fading samples using
N = 32 sinusoids. This implementation uses 90% of the
configurable slices, 38% of the XteremeDSP slices, and 99%
percent of the 18 Kb on-chip block memories and it can
generate up to 1184× 342 million 2× 16−bit complex fading
samples per second. These flat fading channels can be com-
bined to model different fading scenarios ranging from 1184
independent flat fading channels to frequency-selective fading
channels with 1184 resolvable paths. In a frequency-selective
fading channel, the transmitted signal typically reaches the
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Fig. 5. Effect of a 5-path frequency-selective channel on a transmitted signal.

TABLE I
CHARACTERISTICS OF DIFFERENT SOS-BASED FADING CHANNEL

SIMULATORS IMPLEMENTED ON A XILINX VIRTEX-II PRO XC2VP100-6
FPGA

Model [23] [11] Proposed
Fading Rayleigh Rician Rician

# of paths 9 32 32
# of Sinusoids N 8 8 32

# of complex waves 72 256 1024
Clock freq. (MHz) 204 201 224

Output rate (MS/sec) 9 × 204 32 × 201 32 × 276 a

Configurable slices 21996 (50%) 39104 (87%) 2151 (4%)
# of multipliers 48 (97%) 160 (36%) 1 (0.2%)
# of BRAMs 12 (24%) 352 (79%) 9 (2.0%)

aSample rate of the new fading simulator depends on the maximum speed of
the interpolator (maximum 276 MHz). If different clock sources are used for
the first (wave superposition running at a maximum frequency of 224 MHz)
and the second (interpolation) stages. If one clock source is used, the maximum
sample rate will be 32 × 224 million complex fading samples per second.

receiver over multiple propagation paths, each path having a
different relative delay and amplitude. The increased delay
spread of the channel corresponds to a reduced coherence
bandwidth. Frequency-selective attenuation occurs when the
coherence bandwidth of the channel falls below the bandwidth
of the signal. Figure 5 shows the datapath of a five-path fading
channel. Each path can have a different delay with respect
to the zeroth path. These relative delays are not necessarily
integer multiples of the sample period. However, path delays
are often represented as integer multiples of the sample period
for simplicity. This model is also known as the tapped delay
channel model [34]. To implement the path delays, one can
utilize the dedicated block memories available on the FPGAs.
These memories can be configured differently according to
the bit-width of the fading coefficients and the delay of each
path. They can also be cascaded to obtain longer path delays.
The maximum path delay is thus limited by the depth of these
on-FPGA BRAMs. The multipliers and adders in Fig. 5 are
complex operators. Note that if the clock frequency F clk of
the fading channel is greater than the target signal sampling
rate Fs, then the complex multipliers and adders can be time-
multiplexed to perform the multiply-accumulate operations in
Fig. 5.

V. SPATIOTEMPORALLAY-CORRELATED MIMO FADING

CHANNEL SIMULATION

The independent fading channels can also be combined
to simulate MIMO channels. While in the above model we
assumed that different fading sequences are correlated in
time but uncorrelated in space; however, in a typical MIMO



scenario, the fades usually exhibit spatial correlations [35].
Propagation characteristics of the environment and physical
parameters, like antenna spacing and orientation, affect the
spatial correlation between different antennas. For simulating
multiple antenna systems, these spatial correlations between
channels need to be user-controllable. To obtain the space-
time correlation characteristics, a temporally-correlated ran-
dom process can be followed by a linear transformation to
be made spatially-correlated [35]. Here we assume that ΣT

and ΣR are the long-term stable transmitter and receiver
correlation matrices, respectively. If C[m] denotes an nR×nT

matrix of unity-variance, temporally-uncorrelated i.i.d Gaus-
sian variables at time m, then the spatiotemporally-correlated
MIMO channel model can be written as [35]

H[m] = AHC[m]B, (18)

where A and B can be obtained using the Cholesky decom-
positions of ΣT = BBH and ΣR = AAH , respectively.
To normalize the channel gain, we set Tr(ΣT ) = nT and
Tr(ΣR) = nR, where the trace Tr(X) of a matrix X denotes
the sum of the diagonal elements of X. The Cholesky decom-
position of correlation matrices can be calculated in software
in advance and then loaded as constant parameters into the
hardware simulator to minimize the run-time computational
complexity.

To illustrate the new implementation technique, we start
by writing the difference between H[m] and H[m − 1]. The
difference matrix E[m] is

E[m] = H[m] − H[m− 1]
= AHC[m]B− AHC[m− 1]B
= AH(C[m] − C[m− 1])B
= AHD[m]B. (19)

From here, since Dij [m] = Cij [m] − Cij [m − 1], we can
use (14) to find the in-phase (and similarly the quadra-
ture) elements of the matrix D. Then the elements of
E[m] can be calculated according to (19) at frequency F̂s.
Spatiotemporally-correlated MIMO fading samples are then
interpolated I−times with a matrix accumulator as follows:

H[mI + 1] = 2−k
m∑

ḿ=0

i∑
j=0

E[(ḿ+ 1)I] + E[0]. (20)

Figure 6 shows the datapath for generating
spatiotemporally-correlated Rayleigh fading samples for
MIMO fading simulation. To simulate MIMO channels,
the independent elements of the matrix D[m] are stored
in dual-port memory “RAM d”. Matrices A, B and E as
well as temporary results are stored in memory “RAM
A-B-H-T”, which is implemented using a two-port on-chip
block memory. This datapath computes the elements of matrix
E[m] according (19). The matrix entries are then interpolated,
as explained in the previous section, to provide the MIMO
channel fading samples.

To demonstrate the accuracy of this MIMO fading
channel simulator, we utilize the simulator for the bit

Fig. 6. Datapath for generating spatiotemporally-correlated Rayleigh fading
samples for MIMO fading simulation.
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Fig. 7. Bit error rate (BER) performance of a 2 × 2 MIMO system.

error rate (BER) performance measurement of a 2 × 2
MIMO system on a GVA-290 FPGA board [36]. In this
system, the transmitted bits are modulated with 4-QAM
modulation and at the receiver, a maximum-likelihood
(ML) detector demodulates the received samples. Also,
the receiver is assumed to have perfect knowledge of
channel state information. Figure 7 shows the hardware
BER performance of this 2×2 MIMO system for spatially-
uncorrelated as well as spatially-correlated scenarios using
equation (20). In this simulation, signal to noise ratio (SNR)
is define as the total transmitted signal power to total noise
power at the receiver. Moreover, the sample rate is set
to 3.125 million samples per second or 12.5 Mbps and
the Doppler frequency is fD = 350 Hz. For the spatially-
correlated fading channel, the A and B matrices are set
to

A =
(

0.9027 0
−0.2012− j0.8535 0.6480

)
,

B =
(

0.4163 0
−1.1337 + j0.7357 0.0472

)
.

The above values are chosen randomly to represent a hy-
pothetical communication scenario. Figure 7 also plots the
computer simulation results from a floating-point model
of equation (18). As this figure shows, for both spatially-
uncorrelated and spatially-correlated fading channels, our



TABLE II
CHARACTERISTICS OF DIFFERENT SOS-BASED MIMO FADING CHANNEL

SIMULATORS

Design I [7] II [37] III NEW a

# of Channels 1 2 2
# of Sinusoids N 16 8 32
Clock freq. (MHz) 50 201 224

Output rate (MS/sec) 4 × 1.5 2 × 4 × 201 2 × 4 × 276
Configurable slices 22576 (58%) 41198 (93%) 1877 (4%)
# of multipliers − 272 (61%) 1 (0.2%)
# of BRAMs (17%) 288 (65%) 9 (2.0%)

aDesign I was synthesized to a Altera APEX EP20K1000EBC652-3. Designs
II and III were synthesized to Xilinx Virtex-II Pro XC2VP100-6 FPGA.
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Fig. 8. Autocorrelation of the in-phase and quadrature components of the
generated fading samples for one block containing 2×106 samples generated
using fixed-point simulation with fDTs = 0.001, θ0 = π/3, and N = 32
for K = 0 (Rayleigh), 1 and 3.

hardware simulation matches the floating-point results
from the original model which verifies the accuracy of
our hardware fading simulator.

Table II compares our implementation results with those
reported in [7] and [37]. The new MIMO fading simulator was
implemented on a Xilinx Virtex-II Pro XC2VP100-6 FPGA.
We configured the hardware to generate two spatiotemporally
correlated 4 × 4 MIMO fading channels (i.e., 32 paths alto-
gether) and we used N = 32 sinusoids for simulating each
Rayleigh fading channel. Our FPGA implementation uses 4%
of the configurable slices, one dedicated multiplier, and nine
of the 444 on-chip memory blocks (2%). The results in Table
II show that the new design is significantly smaller and more
efficient than the previous designs.

VI. ACCURACY ASSESSMENT USING FIXED-POINT

SIMULATION

To demonstrate the accuracy of the proposed fading channel
simulator, we first developed a library of parameterizable
fixed-point arithmetic and logical routines in MEX (C for
MATLAB). Then we implemented a bit-true model of our
proposed fading channel simulator using fixed-point modules
and generated sequences of fading samples. We simulated
different Rayleigh and Rician fading scenarios for a fading
channel with fDTs = 0.001 and N = 32 sinusoids. Figure
8 demonstrates the autocorrelation for 2 × 106 in-phase and
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Fig. 9. Cross-correlation between the in-phase and quadrature components
of the generated fading samples for one block containing 2 × 106 samples
generated using fixed-point simulation with fDTs = 0.001, θ0 = π/3, and
N = 32 for K = 0 (Rayleigh), 1 and 3.

quadrature components of the generated fading samples for
Rician factors K = 0, 1 and 3. The theoretical reference ACFs
and CCFs are given by the following equations [32]:

Rri,ri(τ) = Rrq,rq(τ) =
[Jo(2πfDτ)

+ K cos(2πfDτ cos θ0)
]
/(2 + 2K) (21)

Rri,rq(τ) = −Rrq,ri(τ) =
K sin(2πfDτ cos θo)

2 + 2K
(22)

where Jo(·) is the zeroth-order Bessel function of the first
kind. As Fig. 8 shows, there is a close match between
the expected analytical autocorrelation plots (computed in
floating-point) and the generated fixed-point simulation results.
Figure 9 plots the cross-correlation between the in-phase and
quadrature components of the generated fading samples and
the analytical curves. This figure again shows a close match
between the fixed-point simulation results and the desired
curves.

As noted above, two important statistical properties of
fading channels are the LCR and the AFD. The LCR is the rate
at which the envelope crosses a specified level with positive
slope. The LCR characterizes important aspects of the dynamic
temporal behavior of envelope fluctuations. AFD indicates
how long the envelope stays below a given threshold and hence
determines the average length of burst errors. These measures
can help us better design the wireless systems for different
fading channels [38], [39].

Figure 10 shows the LCR (normalized to fDTs) of the
amplitude of generated complex fading samples along with
the theoretical LCR of the fading envelope given by [32]:

L|R|(λ) =

√
2(1 +K)

π
λfD exp

( −K − (1 +K)λ2
) ×

∫ π

0

(
1 +

2
λ

√
K

K + 1
cos2 θ0. cosα

)
×

exp
(
2λ

√
K(1 +K) cosα

−2K cos2 θ0. sin2 α
)
dα. (23)



Figure 10 again shows excellent agreement between the the-
oretical and fixed-point simulation results for different values
of Rice factor K .
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Fig. 10. Normalized level crossing rate function for one block containing
2×106 fading samples generated using fixed-point simulation with θ0 = π/3
and N = 32 sinusoids, for K = 0 (Rayleigh), 1, 3, 5 and 10.

Figure 11 shows the theoretical AFD and the AFD of the
generated samples in our fixed-point simulation for 2 × 10 6

samples and different values for K . The AFD of the fading
envelope is given by [32]:

T|R|(λ) =
1 −Q

(√
2K,

√
2(1 +K)λ2

)
L|R|(λ)

, (24)

where Q(·) is the Marcum Q function [40]. To have distinct
curves for illustration, in this simulation the angle of arrival
for the specular component is set to θ0 = 0. As this figure
shows, the results of our fixed-point simulation very closely
match the theoretical references.

Fig. 11. Normalized average fade duration function for one block containing
2 × 106 fading samples generated using fixed-point simulation with θ0 = 0
and N = 32 sinusoids, for K = 0 (Rayleigh), 1, 3, 5 and 10.

Finally, Fig. 12 plots the probability density function (pdf)
of the amplitude of the generated samples. Once again it can

be observed that this pdf accurately reproduces its reference
curve [32]

f|R|(z) = 2(1 +K)z × exp
[ −K − (1 −K)z2

] ×
Io

[
2z

√
K(1 +K)

]
, z ≥ 0 (25)

for five different values of the Rice factor. In (25), Io(·)
denotes the zero-order modified Bessel function of the first
kind.
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Fig. 12. Probability density function for one block containing 2×106 fading
samples generated using fixed-point simulation.

VII. CONCLUSIONS

We proposed an especially compact and accurate fading
channel simulator that significantly improves on previous
designs. We utilized an improved sum-of-sinusoids fading
model that permits very compact implementations of Rayleigh
and Rician fading channel simulators. Without appreciable
loss in accuracy, fading samples are generated at a low rate
and interpolated later to match the desired output sample
rate. In the first stage of the fading simulator, the discrete
difference between fading samples is computed. The discrete
difference is then interpolated to produce the final samples.
The interpolation factor is chosen to be a power of two to
avoid the need for multipliers and thereby reduce the required
hardware resources. The statistical accuracy of the new model
was confirmed through fixed-point simulation.

The new design can be efficiently mapped onto FPGA
hardware. For example, an implementation of a fading channel
with 32 paths using 32 complex sinusoids per path on a
Xilinx Virtex-II Pro XC2VP100-6 FPGA uses only 4% of the
configurable slices, one dedicated multiplier, and nine on-chip
memory blocks, while generating over 32×276 million 2×16-
bit fading samples per second. The new simulator is capable of
generating up to 1184 independent streams of fading samples
on a single Xilinx Virtex-4 XC4VLX200-11 FPGA. These
streams can be configured to simulate various fading scenarios
including single and multipath, Rayleigh and Rician fading
for single and multiple-antenna communication. For example,
an entire 4 × 4 multipath MIMO (multiple-input multiple-
output) channel simulator can be implemented on a small
fraction of a single FPGA. Each channel can be parameterized
independently to support various propagation conditions.
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