
1

High-Throughput and Compact FFT Architectures Using the
Good-Thomas and Winograd Algorithms

Nikhilesh Bhagat, Daniel Valencia, Amirhossein Alimohammad, and fred harris
Department of Electrical and Computer Engineering

San Diego State University, San Diego, U.S.A.

Abstract—This article presents two hardware architectures for
the efficient implementation of fast Fourier transform (FFT)
based on the combined Good-Thomas and Winograd Fourier
transform algorithms. The combined algorithms require fewer
multiplications compared to the other FFT algorithms by elimi-
nating twiddle factor multiplications. Two hardware architectures
are presented: one is a fully-pipelined architecture using multi-
dimensional Chinese remainder theorem for a high-throughput
implementation and the other is a time-multiplexed architecture,
which utilizes the folding transformation for the compact realiza-
tion of short-length Winograd Fourier transforms. Both designs
are fully-parameterizable and have been verified against their
synthesizable Verilog descriptions. The characteristics and the
implementation results of the two hardware architectures on a
Xilinx field-programmable gate array (FPGA) are presented. To
the best of our knowledge, this article presents the first hardware
realization of FFT based on the combined Good-Thomas and
Winograd FFT algorithms. The application of the proposed FFT
architectures in the physical layer of the long-term evolution
(LTE) wireless standard is discussed.

I. INTRODUCTION

While fast Fourier transform (FFT) algorithms have reached
maturity, their efficient hardware implementation is still of
interest for a wide range of applications. Variants of FFT
algorithms use a divide-and-conquer strategy to map the
original computation into several sub-computations in such a
way that the cost of subproblems (including computational
complexity and memory accesses) and the mapping overhead
is less than the cost of the original solution [1]. Various FFT
algorithms have been developed over the decades to find a
balance between the cost of subproblems and the mapping
overhead.

The FFT algorithms can be broadly divided into two main
categories: (i) the composite (non-prime) length FFT algo-
rithms, such as the Cooley-Tukey (CT) [2] and the Good-
Thomas (GT) algorithms [3], [4], where the length of the
Fourier transform N can be any length that can be subdivided
into smaller transforms of sizes N1 and N2 (N1 and N2 are
integer factors of N , i.e., N = N1 ×N2); and (ii) the prime-
length FFT algorithms, such as the Winograd [5] and Rader
algorithms [6], where the Fourier transform length is a prime
number.

The breakthrough of the Cooley-Tukey FFT comes from
the fact that it brings the N2 computational complexity of
discrete Fourier transform down to an order of N logN
operations. Special cases of the Cooley-Tukey algorithm for
N = 2n or 4n, or rn in general, can be derived for what
is called the mixed-radix FFT algorithms [7]. Radix 2 and
4 are widely utilized in many signal processing applications.

Higher radices, such as Radix 8 and up, decreases the number
operations, but they generally require a relatively complex
hardware for small enhancements. Split-radix algorithms [8]
use a different radix for the even and odd parts of the
transform and is known for achieving the minimum known
number of operations for powers-of-two FFTs. The mixed-
radix generalization may use different algorithms depending
on whether the factors satisfy certain restrictions.

The Cooley-Tukey algorithm and its radix-based variants are
attractive due to their simple structures and their relatively low
arithmetic complexity for lengths equal to powers of 2 or 4,
which has led to many relevant published works [9] [10] [11]
[12] [13] [14]. However, when the initial transform length is
divided into sublengths which are not relatively prime, these
groups of algorithms lead to unavoidable auxiliary complex
multiplications by roots of unity, known as twiddle factors.
When the factors of the transform lengths are co-prime (i.e., if
N = N1×N2 and gcd(N1, N2) = 1), Good and Thomas pro-
posed an alternative divide-and-conquer strategy based on the
index transformations to factorize the Fourier transform into
multi-dimensions without the twiddle factor multiplications. In
fact, only real multiplications are utilized. This algorithm is
also known as the prime-factor algorithm (PFA). These multi-
dimensional shorter length sequences can be transformed using
the Winograd Fourier transform algorithm (WFTA), which
further reduces the number of required multiplications.

This article presents two architectures for compact and also
high-throughput (HT) implementations of Fourier transforms
using the combined Good-Thomas and Winograd algorithms.
The rest of this article is organized as follows. Section II
briefly discusses the combined Good-Thomas and Winograd
algorithms. The high-throughput and compact FFT hardware
architectures of the combined PFA and WFTA algorithms
are explained in Sections III and IV, respectively. Section
V discusses the application of the proposed architectures in
the physical layer of the long-term evolution (LTE) wireless
standard. Finally, section VI makes some concluding remarks.

II. COMBINED GOOD-THOMAS AND WINOGRAD FFT
ALGORITHMS

The Good-Thomas algorithm involves an indexing of the
input array by exploiting the Chinese remainder theorem
(CRT), which transforms the one-dimensional input sequence
of length N into two dimensions N1×N2, and computing the
two-dimensional transform along each dimension, and finally
re-indexing of the results back to one dimension using the
Ruritanian correspondence mapping (RCM) [15]. Note that

2

these smaller transforms of size N1 and N2 can be evaluated
by applying PFA recursively. The input data is stored in a
two-dimensional array by starting in the upper left corner and
listing the indices down the extended diagonal. Because the
number of rows and the number of columns are co-prime, the
extended diagonal passes through every element of the array.
The input indices can be described by the CRT as:

n1 = n mod N1,

n2 = n mod N2,

where n1 = 0, 1, 2, . . . , N1 − 1; n2 = 0, 1, 2, . . . , N2 − 1; and

n = [n1N2M2 + n2N1M1] mod N,

where n = 0, 1, 2, . . . , N − 1. The values of M1 and M2

can be solved through [N1M1 + N2M2] = 1 by using
the Euclidean algorithm, where N1 and N2 are scalar and
integer coefficients of the given linear Diophantine equations,
N2M1 = 1 mod N1, and N1M2 = 1 mod N2.

The output indices are defined using the RCM as follows:

k1 = kM2 mod N1,

k2 = kM1 mod N2,

where k1 = 0, 1, 2, . . . , N1 − 1; k2 = 0, 1, 2, . . . , N2 − 1; and

k = [k1N2 + k2N1] mod N,

where k = 0, 1, 2, . . . , N − 1, and M1 and M2 are integers
determined during the input mapping. As an example, the
input and output mapping for a 15-point FFT, where N = 15,
N1 = 3, and N2 = 5, as shown in Fig. 1, can be solved using
the above equations.

� � �� � �

�� � � �� �

	 �� �
 ��

� � � � ��

	
 �� �� �

�� �� � � �

�
�

�
�

�
�

�
�

Fig. 1. The block diagram of the Good-Thomas mapping for a 15-point
Fourier transform.

The DFT X[k] of a sequence x[n] of N terms is defined
as:

X[k] =

N−1∑
n=0

x[n]ωnk, (1)

where the x[n] is viewed as N consecutive samples, x[nT],
of a continuous signal x(t), and ωnk = e−j2πnk/N are the
twiddle factors. By substituting these indices in Equation (1),
we can write:

Xk1k2 =

N1−1∑
n1=0

N2−1∑
n2=0

W
(n1M2N2+n2M1N1)(k1N2+k2N1)
N1N2

x[n1n2],

where the product in the exponent can be written as:

Wnk
N = W

n1k1M2N
2
2

N W
n2k2M1N

2
1

N ×
Wn1k2M2N1N2

N Wn2k1M1N1N2

N .

From the CRT/RCM equations, we can write:

M2N2 = (1 −M1N1),

M1N1 = (1 −M2N2),

N1N2 = N,

WN1N2 = 1.

Therefore, the exponent will reduce to:

Wnk
N = Wn1k1

N1
Wn2k2
N2

.

The Good-Thomas Fourier transform can thus be written as:

Xk1k2 =

N1−1∑
n1=0

N2−1∑
n2=0

Wn1k1
N1

Wn2k2
N2

x[n1n2]. (2)

Equation (2) is a decoupled two-dimensional N1 × N2-point
transform, i.e., either the rows or columns can be transformed
in any order. An important property of the Good-Thomas
Fourier transform is that there are no twiddle factor multipli-
cations involved. The pseudo-code of the GT FFT algorithm
is given in Algorithm 1.

Algorithm 1 Good-Thomas Fourier Transform Algorithm
procedure INPUT MAPPING:

for i ∈ N1 do
for j ∈ N2 do

CRT(i, j) = (j−1)×N2×M2+(i−1)×N1×M1) mod N ;
end for

end for
end procedure
procedure COLUMN TRANSFORMATION:

for i ∈ N2 do
Select all the elements of column i;
Perform N1-point FFT for the N1 elements of column i;
Returns a 2D array with the FT of all N2 column vectors;

end for
end procedure
procedure ROW TRANSFORMATION:

for i ∈ N1 do
Select all the elements of row i;
Perform N2-point FFFT for the N2 elements of row i;
Returns a 2D array with the FT of all N1 row and N2 column vectors;

end for
end procedure
procedure OUTPUT MAPPING:
Initialize k = 0

for i ∈ N1 do
for j ∈ N2 do
k = (j − 1)×N2 + (i− 1)×N1 modN ;
k = k + 1;

end for
end for

end procedure

The limitation of the PFA algorithm is that it requires that
the lengths along each dimension N1 and N2 to be co-prime. It
is reasonable to assume that these lengths are relatively small
since Good’s mapping can provide a full multi-dimensional
factorization when N is highly composite. In fact, a set of
small Fourier transforms (e.g., Ni = 2, 3, 4, 5, 7, 8, 16) is
sufficient to provide a set of feasible longer lengths. While
PFA requires a more complicated indexing and re-indexing of
data, even though the mapping requires no arithmetic operation
and only permutations, the index mapping can be precomputed
and stored for indirect indexing.

3

To efficiently compute these set of relatively small lengths
FFTs that are co-prime, we utilize the WFTA [16], which
requires only O(N) real irrational multiplications, leading to
a proven achievable lower bound on the number of multipli-
cations 2N . Note that WFTA has failed to replace the popular
Cooley-Tukey algorithm and its radix-based variants for FFTs
of sequences with a relatively large lengths. This is due to
the fact that replacing twiddle factor complex multiplications
by a smaller number of real multiplications may increase the
number of additions for relatively large transform lengths.

The combined PFA and WFTA algorithms can be sum-
marized in the following four steps: (i) mapping the input
sequence based on the CRT into two dimensions N1 × N2,
where N1 and N2 are co-prime; (ii) calculating N1-point
WFTAs of N2 columns. The result is a two-dimensional array
with the Fourier transform of all N2 column vectors; (iii)
calculating N2-point WFTAs of N1 rows. The result is a two-
dimensional array with the Fourier transform of all N1 row
vectors; (iv) mapping the two-dimensional output sequence
back onto a one-dimensional sequence of N samples based
on the RCM [15]. Note that the row and column transforms
can be performed in either orders. The above four steps can be
repeated iteratively to calculate FFTs with smaller composite
co-prime transform lengths. For example a 1008-point FFT
can be decomposed into 63 × 16-point FFTs, and a 63-point
FFT can be decomposed into 7 × 9-point FFTs.

To compare the number of multiplications and additions
required by various FFT algorithms, let’s write Equation (2)
as:

Xk1k2 =

N1−1∑
n1=0

Wn1k1
N1

x[n1]

N2−1∑
n2=0

Wn2k2
N2

x[n2], (3)

where x[n1] and x[n2] denote row/column mapped input
samples. Assuming that the row and column Fourier trans-
forms are computed using DFTs, this results in N1 column
transforms, each requiring approximately N2

2 multiplications
and additions, and N2 row transforms, each requiring N2

1 mul-
tiplications and additions. The GT FFTs require N1(N2)2 +
N2(N1)2 multiplications and N1(N2)2 + N2(N1)2 additions
while the CT FFTs require N1(N2)2 + N2(N1)2 + N1N2

multiplications and N1(N2)2 +N2(N1)2 additions. Winograd
transforms for N1 and N2 point FFTs convert the prime length
FFTs into cyclic convolutions without using any complex
twiddle multiplications while using the minimum number of
multiplications. The number of additions and multiplications
for different transform lengths using the Winograd algorithm
are given in Table I. Thus, the total number of multiplications
required for an N -point FFT, implemented using the combined
Good-Thomas and Winograd FFT algorithms is N2(N1w) +
N1(N2w), where N1 and N2 are the two prime factors of
N and N1w and N2w are the number of multiplications for
Winograd transforms lengths of N1 and N2, respectively.

Fig. 2 and Fig. 3 show the number of multiplications and
additions required by various FFT algorithms. Table II gives
the total number of additions and real multiplications for a
1008-point GT+WFT and also 1024-point CT, radix-2, and
radix-4 FFT algorithms. It can be seen that the GT+WFTA

TABLE I
NUMBER OF ADDITIONS AND MULTIPLICATIONS FOR DIFFERENT

TRANSFORM LENGTHS USING THE WINOGRAD ALGORITHM

N Multiplications Additions

2 0 2
3 2 6
4 0 8
5 5 17
7 8 38
8 2 26
9 10 44

16 10 74

approach requires the minimum number of multiplications
at the cost of more additions, while the total number of
arithmetic operations is still significantly lower for GT+WFT.
This makes it a suitable candidate for an efficient hardware
implementation, which can ultimately lead to a less power-
consuming design.

Size of Fourier transform

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

M
u

lt
ip

li
c
a
ti

o
n

s

×105

0

1

2

3

4

5

6

7

8

Radix-2 FFT

Radix-4 FFT

Cooley-Tukey FFT

Good-Thomas FFT

Good-Thomas Winograd FFT

Fig. 2. Number of multiplications for different FFT algorithms.

TABLE II
NUMBER OF ADDITIONS AND REAL MULTIPLICATIONS REQUIRED FOR A

1008-POINT FFT USING VARIOUS FFT ALGORITHMS

FFT GT+WFT CT Radix-2 Radix-4
Multiplications 2902 80640 20480 15360

Additions 34416 79632 30720 28160
Total 37318 160272 51200 43520

III. A HIGH-THROUGHPUT ARCHITECTURE FOR THE
COMBINED GOOD-THOMAS AND WINOGRAD FFT

The top-level block diagram of our high-throughput archi-
tecture is shown in Fig. 4. The architecture consists of four
computational stages: input mapping, N1-point and N2-point
Winograd Fourier transforms (WFTs), and output mapping.
The architecture reads the real and imaginary parts of N
complex-valued input samples in sequence and stores them in
an input block memory (BRAM). The outputs are produced in
sequence and stored in an output BRAM. The FFT architecture
uses a finite state machine (FSM) to control the sequence of
FFT operations. When the input data is valid (indicated by the

4

TABLE III
CHARACTERISTICS AND IMPLEMENTATION RESULTS OF THE HIGH-THROUGHPUT FFT ARCHITECTURE

FFT points 2 3 4 5 7 8 9 16 1008
Multipliers 0 2 0 5 8 2 10 10 28

Adders 2 6 8 17 35 26 44 74 153
Registers 467 876 984 1123 2061 1385 2764 3576 8513

LUTs 598 978 1126 1605 3029 2330 3949 6003 14615
DSP48s 0 4 0 10 16 4 20 20 56

Pipeline Stages 1 8 3 10 11 8 13 10 34
Clock Frequency (MHz) 530 530 530 530 530 530 530 530 386

Computational Latency (Cycles) 1 8 3 10 11 8 13 10 2084
Overall Latency (Cycles) 3 11 7 15 18 16 22 26 4100

Size of Fourier transform

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
u

m
b

e
r

o
f

A
d

d
it

io
n

s

×105

0

1

2

3

4

5

6

7

8

Radix-2 FFT

Radix-4 FFT

Cooley-Tukey FFT

Good-Thomas FFT

Good-Thomas Winograd FFT

Fig. 3. Number of additions for different FFT algorithms.

validIn control signal), the controller goes to the CRT mapping
state to map the one-dimensional input sequence onto a two-
dimensional sequence based on the CRT. Let N denote the
length of the transform and N1 and N2 be its co-prime factors.
The index value of the element in the (i, j) index is given by
(j−1)×N2×M2 + (i−1)×N1×M1) mod N , where M1

and M2 are calculated using the linear Diophantine equation
[7]. These N CRT index values are pre-computed and stored
in the CRT lookup table (LUT) at initialization. We utilize two
and three-dimensional CRT mappings when converting a one-
dimensional sequence into a two-dimensional sequence. The
three-dimensional CRT mapping is the repetitive use of the
two-dimensional CRT mappings. To explain the differences
between the two and three-dimensional realizations, assume a
1008-point FFT. The CRT mapping starts with the mapping
of 1008 inputs into a 16 × 63 two-dimensional matrix of
indices. Then each 63 elements in a row of this matrix is
CRT-mapped into a 7×9 two-dimensional matrix of indices. In
the two-dimensional CRT mapping, WFTs are applied to 7×9
matrices. That is, for the first 63 samples in a row, we perform
9-point transforms 7 times and also 7-point transforms 9 times
(row- and column-based). The process continues with the CRT-
mapping of the 63 elements in the second row and so on.
In the three-dimensional implementation, we also map 1008
inputs into a 16 × 63 two-dimensional matrix of indices and
then each 63 elements in a row of this matrix is CRT-mapped
into a 7 × 9 two-dimensional matrix of indices. However, in

the three-dimensional CRT mapping, we replace these indices
into the corresponding row in the original 16 × 63 matrix of
indices. To apply WFT, we first perform 9-point row-based
transforms 1008/9 = 112 times, 7-point row-based trans-
forms 1008/7 = 144 times and then 16-point column-based
transforms 1008/16 = 63 times. The three-dimensional CRT
mapping especially reduces the latency required to perform
higher order FFTs.

N1-POINT

WFT

N1×N2

BRAM

N2-POINT

WFT

INPUT

MAPPING

OUTPUT

MAPPING

ready

validOutdone

dataR

validIn

dataI

dataR

dataI

dataR

dataI

dataR

dataI

dataR

dataI

dataR

dataI

ready

done

Fig. 4. High-throughput architecture of the combined PFA and WFTA.

After N1 clock cycles, which is how long it takes to map
the input samples onto the first column, the control goes to the
column transformation state while the input mapping module starts
mapping the input samples onto the second column. In this
state, WFT of the N1-point column sequence is performed.
We derived and implemented WFT of various small block
lengths using their signal flow graphs (SFGs). As an example,
the SFG of a 3, 5, and 8-point WFTs are shown in Fig.
5. The multiplier coefficients of different SFGs are stored
in a LUT at initialization. For high-throughput operations,
the feedforward SFGs of relatively small transform lengths
are pipelined, utilizing three-stage and one-stage pipelined
multipliers and adders, respectively. The output of N1-point
WFT will be stored in an N1 × N2 BRAM. The process of
input mapping and N1-point WFT will be repeated N2 times
so that all N input samples are column-transformed.

After performing column transformation, the control unit
moves to the row transformation state. In this state, samples at the
distance of N1 points are read from the BRAM to form an N2-
point row sequence. After every N2-point WFT, the control
unit moves to the output mapping state. The output mapping
is performed using RCM technique to convert a given two-
dimensional sequence back to a one-dimensional sequence.
According to the RCM index mapping, the index value of the
element in the (i, j) index is given by (j−1)×N2+(i−1)×N1

mod N . These N index values are pre-computed and are
stored in the RCM LUT at initialization. The process of N2-point
WFT and output mapping will be repeated N1 times for all
N1 rows. Once the FFT computation is completed, the validOut

5

Fig. 5. The SFGs for the (a) 3-point, (b) 5-point, and (c) 8-point WFTs.

signal is asserted indicating that the transformed sequence is
ready at the output. The high-throughput realization of FFTs is
supported by the pipelined implementation of the Winograd’s
SFGs and also the temporal parallelization among the sub-
blocks of the FFT architecture. The FFT computational blocks
are operating in a time-overlapped fashion using ready and
done hand-shaking control signals for inter-communications
between different blocks. As soon as data is ready at a stage,
it is passed on to the next module and it accepts new data for
processing.

We developed a comprehensive library of bit-true fixed-
point and floating-point arithmetic and logical operations in
Mex-C (for fast simulation). The library includes parame-
terizable modules with adjustable bit-widths, that provides a
flexible simulation environment for the bit-true comparison
of approximated fixed-point values with function values in
double precision. Our fixed-point FFT designs are fully-
parameterizable in which the fixed-point representation of
inputs, outputs, intermediate signals, and multiplier coeffi-
cients, can be adjusted. The characteristics and implementation
results of the 16-bit high-throughput FFT architecture for
different block lengths on a Xilinx Virtex-6 CX6VLX240T
field-programmable gate array (FPGA) are given in Table III.
We verified our design in fixed-point Matlab against its synthe-
sizable Verilog description. The number of DSP48s is twice as
many as the number of multipliers as the multipliers multiply
complex-valued data with real-valued coefficients. The 1008-
point FFT implementation utilizes the three-dimensional CRT

mapping. The overall latency includes the number of clock
cycles required to write the input samples onto an input BRAM
and reading the transformed samples from an output BRAM.
The input and output samples are in-order.

IV. COMPACT ARCHITECTURES FOR THE COMBINED
GOOD-THOMAS AND WINOGRAD FFT

For the compact realization of the FFT architecture, we
utilize folding transformation [17] to implement the WFT
of different transformation lengths (i.e., 2, 3, 4, 5, 7, 8, 9,
and 16 points in this work) using only one shared stage of
computation. For example, the SFG of an 8-point WFT shown
in Fig. 5(c) is realized by reusing a single stage of adders,
subtractors, and multipliers to perform its required operations,
iteratively. Then we use the folded Winograd SFGs of dif-
ferent block lengths in the time-multiplexed FFT architecture,
shown in Fig. 6. In this architecture, the four operations of
input mapping, column transformation, row transformation,
and output mapping are performed iteratively. The N-point
WFT block implements various short-length WFT SFGs, each
realized using a single stage of adders and multipliers. Similar
to the high-throughput approach, the N CRT index values
and N RCM index values are pre-computed and stored in
the CRT and RCM LUTs, respectively, at initialization. The
architecture consists of two input multiplexers M1 and M2 and
one output demultiplexer D1. The intermediate samples are
stored in the N1×N2 BRAM. The address line of the BRAM
can be a CRT index for an input sample, an RCM index for an
output sample, or an address from the N1-point or N2-point
WFTs, selected by M1. The data line of the BRAM can be
from the input or from output of the N-point WFT module. The
output demultiplexer D1 passes the transformed samples to
the output or to the WFT modules. The select control signals
of the multiplexers and the demultiplexer are generated by
the FSM controller. Table IV gives the characteristics and
the implementation results of the compact FFT architecture
on the same FPGA device used for the high-throughput FFT
architecture implementation.

CLK

CRTaddr
CRT

LUT

CLK

address

CRT
index

N1-point FFT
data addr.

N2-point FFT
data addr.

wEn

RCM
index

FFT Output

addrSelect

dataInSelect

dataOutSelect

RCMaddr

N1 or N2-
point FFT
input data

RCM

LUT

N1×N2

Data

BRAM

N

data

M1

M2

D1

N-point

WFTFFT Input

Fig. 6. The top-level architecture of the time-multiplexed FFT architecture.

To realize an even more compact implementation of the
FFT architecture, we use folding transformation to implement
the Winograd SFGs of different block lengths using a single
stage of adders and multipliers only, as shown in Fig. 8. The
number of adders and multipliers in this folded architecture is

6

TABLE IV
CHARACTERISTICS AND THE IMPLEMENTATION RESULTS OF THE

COMPACT FFT ARCHITECTURE

Length 2 3 4 5 7 8 9 16
Mults. 0 2 0 5 8 2 10 10
Adders 2 2 4 4 8 8 8 16
Regs. 67 102 131 205 424 271 533 597
LUTs 198 503 404 1008 2433 2304 4739 5703

DSP48s 0 4 0 10 16 4 20 20
Freq. 404 216 293 224 222 191 170 180

Cmp. L. 1 5 3 7 8 5 10 7
Ovr. L. 3 8 7 12 15 13 19 23

determined by the maximum number of adders and multipliers
required in different stages of various Winograd SFGs. The
eight adders, eight subtractor, and ten multipliers used in
the single-stage WFT architecture are not pipelined. MA00
to MA15 are 16 multiplexers for the adders’ inputs, MS00
to MS15 are 16 multiplexers for the subtractors’ inputs, and
MM0 to MM9 are 10 multiplexers for the multipliers’ inputs.
Note that one of the inputs of each multiplier is a real
value and all the multipliers’ coefficients are stored in a
LUT at initialization. The select signals for the multiplexers,
collectively denoted as ControlWord , is a 268-bit word and is
generated by the FSM controller. The first 178 bits of the
ControlWord are connected to the select lines of the multiplex-
ers, which control the inputs of the adders and multipliers.
The remaining 90 bits are connected to the select lines of
the input multiplexers of registers R0, . . . , RN−1. Reusing the
array of adders, subtractors, and multipliers will result in a
significantly more compact realization compared to our high-
throughput implementation. Table V gives the characteristics
and the implementation results of the time-multiplexed FFT
architecture utilizing an array of single-stage Winograd SFGs
and the folded FFT architecture using a single-stage Winograd
SFG for the realization of all small block lengths as shown
in Fig. 8. Note that the number of computational resources
such as adders and multipliers reported in Table V may not
necessarily be the same as the theoretical number of numerical
operations inherent to the transform, as given in Table II. For
example, in some FPGA designs, a 32-bit multiplication may
be implemented using two 18-bit DSP48 units. The reduced
clock frequency is due to the fact that multipliers and adders
are not pipelined and the wide multiplexers add to the critical
path delay of the compact design. The shorter latency of the
folded architecture is due the utilization of three-dimensional
CRT mapping instead of using two-dimensional CRT mapping
twice.

Table VI gives the characteristics and the implementation
results of various published FFT implementations along with
our implementation results. The designs in [9] and [10] present
radix-22 single-path delay feedback (SDF) FFT architecture,
which implements a FFT with the same multiplicative com-
plexity of radix-4 FFT but maintains the simple structure of
the radix-2 butterfly. The design in [10] also presents a radix-
4 single-path delay commutator FFT architecture. Note that
the designs in [9] and [10] implemented on spartan FPGA
devices do not report the number of registers, look-up tables
(LUTs), DSP48s, and block RAMs utilized. Memory-based

TABLE V
RESOURCE UTILIZATION OF THE GOOD-THOMAS FFT ARCHITECTURE
USING COMPACT WINOGRAD SINGLE STAGE FFT ARCHITECTURE FOR

1008-POINT FFT

Design Time-multiplexed Folded
FFT arch. FFT arch.

Multipliers 28 10
Adders 32 16

Registers 1635 681
LUTs 13054 15119

DSP48s 56 20
BRAMs 8 7

Clock Frequency (MHz) 182 150
Computational Latency 11017 7962

Overall Latency 12027 9978

radix-2 FFT architectures are presented in [11] and [12]. The
implementation results of the intellectual property from Xilinx
[13] are also presented. The design in [14] implements a 12-
point to 1296-point FFT using a combination of high-radix
FFTs such as 25- and 16-point FFTs using the Winograd
Fourier transform algorithm. Unfortunately, they do not di-
rectly report the number of utilized registers, DSP48s, and
signals’ wordlengths in their manuscript.

We have also implemented various memory-based FFTs, in-
cluding radix-2, radix-4, radix-8, mixed-radix, and split-radix
algorithms. The designs perform computation via recursive use
of radix-n (i.e. n = 2, 4, 8, etc) butterfly units. Once a stage
has been computed, the outputs are passed to the following
stage or the output ports, allowing the FFT to be performed
on a new dataset. The twiddle factor coefficients are pre-
computed and stored in block RAMs. One can see that the
number of hardware resources required for the implementation
of GT+WFTA FFT algorithm is generally greater. This is
due to the irregularity of the SFGs of various WFTs, which
makes it less suitable for compact VLSI implementation
compared to the regular butterfly structures of radix-based
FFT algorithms. Additionally, our designs use LUTs to store
memory addresses, shown in Fig. 6 as CRT LUT and RCM LUT ,
as opposed to BRAM resources. Our design, however, works
at a higher clock frequency and has higher throughput. The
compact GT+WFTA design also reduces the number of reg-
ister resources utilized. By using block RAMs for the storage
of memory addresses, the LUT count can also be remedied.
Note that the compact architecture is designed to reduce the
number of computational units utilized for implementing the
FFT at the expense of a longer latency and a lower throughput
while the high-throughput architecture is designed to process
a large number of FFT computations per second at a relatively
small latency, which is required in various applications, such
as in the LTE physical layer algorithms.

V. APPLICATION OF PROPOSED FFT ARCHITECTURE IN
THE LTE PHYSICAL LAYER

In the time domain, different time intervals within LTE
standard are expressed as multiples of a basic time unit Ts =
1/30720000 [18]. Fig. 7 shows the frame structure for LTE in
frequency division duplex (FDD) mode. The radio frame has a
length Tframe = 307200×Ts = 10 ms. Each frame is divided

7

1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11 # 12 # 13 # 14 # 15 # 16 # 17 # 18 # 19 # 20
Slot

number

Tslot=

0.5 ms

Tsubframe

= 1ms

��������	�
������

�����

������������

��

�������

FRAME STRUCTURE

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

SUB-FRAME STRUCTURE
CP =

5.2 us

Special OFDM

symbol

CP =

4.7 us

OFDM symbol

Useful symbol

duration

Fig. 7. LTE symbol and frame structure.

TABLE VI
CHARACTERISTICS AND THE IMPLEMENTATION RESULTS OF DIFFERENT FFT IMPLEMENTATIONS ON VARIOUS FPGAS

Design FFT N WL Device Regs. LUTs BRAMs DSP48s Clock Latency Time Throughput
(MHz) (Cycles) µsec MSamp/sec

[9] Radix-22 1024 16 Spartan 3 −− 5916 −− 16 92 6086 65.89 –
[10] R4SDC 1024 16 Spartan 3064 −− 8 −− 219 1041 4.67 219
[10] R22SDF 1024 16 Virtex 2256 −− 8 −− 235 1042 4.35 235
[11] Radix-2 1024 32 – −− 27403 19 32 250 2850 11.4 90
[12] Radix var −− – 2372 4278 19 −− 200 – – 200
[13] Radix-2 1024 16 Virtex-6 4699 6298 17 16 366 12453 34.02 366
Ours Radix-2 1024 16 Virtex-7 5786 5800 10 72 317 6663 21.01 317
Ours Radix-4 1024 16 Virtex-7 9517 7247 5 96 317 6918 21.82 317
Ours Radix-8 4096 16 Virtex-7 16033 14100 16 100 317 36870 116.31 317
[14] Mixed-Radix 1296 −− Virtex-5 −− 23807 −− −− 122 1188 −− 122

25/16/9
Ours Mixed-Radix 1024 16 Virtex-7 10126 8050 5 84 317 8200 25.86 317

2/4/8
Ours Split-Radix 1024 16 Virtex-7 6184 6392 10 64 317 8198 25.86 317

Ours-HT GT+WFTA 1008 16 Virtex-6 8513 14615 10 56 386 4100 25.4 386
Ours- GT+WFTA 1008 16 Virtex-6 681 15119 7 20 150 9978 66.52 0.015

Compact

into 10 equally sized sub-frames of Tsubframe = 30720×Ts =
1 ms in length. Scheduling is done on a sub-frame basis for
both the downlink and uplink. Each sub-frame consists of two
equally sized slots of Tslot = 15360×Ts = 0.5 ms in length.
Each slot in turn consists of a number of orthogonal frequency-
division multiplexing (OFDM) symbols, which can be either
seven (normal cyclic prefix) or six (extended cyclic prefix).
The useful symbol time is Tu = 2048 × Ts ≈ 66.7 µs. For
the normal mode, the first symbol has a cyclic prefix (CP) of
length TCP = 160×Ts ≈ 5.2 µs. The remaining six symbols
have a cyclic prefix of length TCP = 144 × Ts ≈ 4.7 µs.
The reason that the first symbol has a different CP length
is to make the overall slot length, in terms of time units,
divisible by 15360. For the extended mode, the cyclic prefix
is TCP−e = 512 × Ts ≈ 16.7 µs. The CP is longer than
the typical delay spread of a few microseconds typically
encountered in practice. The normal cyclic prefix is used
in urban cells and high data rate applications, while the
extended cyclic prefix is used in special cases, such as multi-
cell broadcast and in very large cells.

Table VII summarizes some of the main physical layer
parameters specified in the LTE standard, where the sub-carrier
spacing ∆f is assumed to be 15 kHz [19], the sampling rate

R0

R1

R2

R17

controlWord

26

Inputs

26

Outputs

MA00

MA15

MS15

MS00

MM9

MM0

Fig. 8. Folded architecture for the implementation of various WFTs using
a single stage of adders and multipliers.

8

is fs = ∆f ×K, where the number of sub-carriers K ranges
from 128 to 2048, depending on the channel bandwidth with
512 and 1024 being most commonly used in practice for 5
and 10 MHz, respectively. It can be seen that the FFT lengths
are chosen to be powers-of-2 as the Cooley-Tukey-type FFT
algorithms have been widely utilized.

TABLE VII
PHYSICAL PARAMETERS FOR THE LTE STANDARD [19]

Channel BW. (MHz) 1.25 2.5 5 10 15 20

No. of Res. Blocks 6 12 25 50 75 100

Occup. Sub-carr. 76 151 301 601 901 1201

Min. Occup. Sub-carr. 72 144 300 600 900 1200

Guard Sub-carr. 52 105 211 423 635 847

FFT Length 128 256 512 1024 1536 2048

Sampling Freq. (MHz) 1.92 3.84 7.68 15.36 23.04 30.72

To use PFA, the sampling frequency should be adjusted
based on the chosen FFT length. For a given channel band-
width, the number of resource blocks and the minimum
number of occupied sub-carriers are fixed. For instance, the
1.25 MHz channel will have 6 resource blocks and 72 occupied
sub-carriers. Note that to avoid interference, the required guard
sub-carriers should be at least 10% of the minimum number of
occupied sub-carriers. Therefore, the required number of guard
sub-carriers can be calculated for a chosen FFT length. For
example, if we use a FFT of size 80 samples for a 1.25 MHz
bandwidth, then the number of occupied sub-carriers is 72.
Therefore, we can have 8 sub-carriers to give 80 sub-carriers,
which is equal to the chosen FFT length. Table VIII gives
the minimum, the possible, and the maximum FFT lengths
using the Good-Thomas and Winograd FFT algorithms for
sub-carrier spacing of 15 KHz and sub-frame duration of 6
ms over different channel bandwidths. One can see that for 10
MHz channel bandwidth, 720-point FFT can be used assuming
120 guard sub-carriers and the sampling frequency of 10.8
MHz or for 15 MHz channel bandwidth, 1008-point FFT can
be utilized assuming 108 guard sub-carriers with the sampling
frequency of 15.12 MHz.

TABLE VIII
THE MINIMUM, POSSIBLE, AND MAXIMUM FFT LENGTHS USING THE

GOOD-THOMAS AND WINOGRAD FFT ALGORITHMS FOR VARIOUS LTE
PARAMETERS

Channel BW. (MHz) 1.25 2.5 5 10 15 20
Occup. Sub-carr. 72 144 300 600 900 1200
Min. FFT lengths 80 160 330 660 990 1320

Guard Sub-carriers 8 16 30 60 90 120
Sampling Freq. (MHz) 1.2 2.4 4.95 9.9 14.85 19.8
Possible FFT lengths 90 180 360 720 1008 2520
Guard Sub-carriers 18 36 60 120 108 1320

Sampling Freq. (MHz) 1.35 2.70 5.4 10.8 15.12 37.8
Max. FFT length 120 240 504 1008 1680 2520

Guard Sub-carriers 48 96 204 408 780 1320
Sampling Freq. (MHz) 1.80 3.60 7.56 15.12 25.2 37.8

VI. CONCLUSIONS

The computation of the Fourier transform using the com-
bined Good-Thomas or prime-factor algorithm (PFA) and

Winograd Fourier transform algorithm (WFTA) proved to
require fewer multiplications compared to Cooley-Tukey type
algorithms, because it does not require twiddle factor multipli-
cations and the use of the small Winograd FFT algorithms in-
side the Good-Thomas fast Fourier transform (FFT) algorithm
significantly reduces the arithmetic complexity due to the
cyclic convolution properties of the Winograd FFT algorithm.
We presented a high-throughput and a compact architecture
for efficient implementation of FFT based on the combination
of PFA and WFTA. Fixed-point simulation results have been
validated by the implementation of the proposed architectures
on a field-programmable gate array (FPGA). Our future work
will focus on extending both architectures to supports larger
block lengths, as well as using more efficient memory address
generation or storage schemes.

ACKNOWLEDGMENT

This work was supported by the Center for Sensorimotor
Neural Engineering (CSNE), a National Science Foundation
Engineering Research Center (EEC-1028725).

REFERENCES

[1] P. Duhamel and M. Vetterli, Fast Fourier transforms: a tutorial review
and a state of the art. Elsevier, 1990, vol. 19, no. 4, pp. 259–299.

[2] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation
of complex Fourier series,” Mathematics of Computation, vol. 19, no. 1,
pp. 297–301, 1965.

[3] I. J. Good, “The interaction algorithm and practical Fourier analysis,”
Journal of the Royal Statistical Society., pp. 361–372, 1958.

[4] L. H. Thomas, “Using a computer to solve problems in physics,”
Application of Digital Computers, no. 5, 1963.

[5] S. Winograd, “On computing the discrete Fourier transform,” Mathe-
matics of Computation, vol. 2, no. 141, pp. 175–199, 1978.

[6] C. Rader, “Discrete Fourier transforms when the number of data samples
is prime,” Proceedings of the IEEE, vol. 56, no. 6, pp. 1107–1108, 1968.

[7] C. Burrus and T. W. Parks, DFT/FFT and Convolution Algorithms:
theory and Implementation. John Wiley & Sons, Inc., 1991.

[8] P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electronics
Letters, vol. 20, no. 4, pp. 14–16, 1984.

[9] K. Harikrishna, T. R. Rao, and V. A. Labay, “FPGA implementation of
FFT algorithm for IEEE 802.16e mobile wimax,” International Journal
of Computer Theory and Engineering, vol. 3, no. 2, pp. 197–202, 2011.

[10] B. Zhou, Y. Peng, and D. Hwang, “Pipeline FFT architectures optimized
for FPGAs,” International Journal of Reconfigurable Computing, pp. 1–
9, 2009.

[11] Sundance Technologies, “http://www.sundance.com/,” 2015.
[12] V. Gautam, K. C. Ray, and P. Haddow, “Hardware efficient design of

variable length FFT processor,” in IEEE International Symposium on
Design and Diagnostics of Electronic Circuits & Systems, 2011, pp.
309–312.

[13] Xilinx Incorporation, “http://www.xilinx.com/,” 2015.
[14] J. Chen, J. Hu, S. Lee, G. Sobelman, “Hardware efficient mixed radix-

25/16/9 FFT for LTE systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 2, pp. 221 – 228, 2015.

[15] E. Chu, Discrete and continuous Fourier transforms: analysis, applica-
tions and fast algorithms. CRC Press, 2008.

[16] D. P. Kolba and T. W. Parks, “A prime factor FFT algorithm using high-
speed convolution,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 25, no. 3, pp. 281–294, 1977.

[17] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and
Implementation. New Yourk: John Wiley & Sons, 1999.

[18] J. Zyren and W. McCoy, “Overview of the 3GPP long term evolution
physical layer,” Freescale Semiconductor, Inc., white paper, 2007.

[19] T. Innovations, “LTE in a nutshell,” White paper, p. 6, 2010.

