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FPGA-Based Bit Error Rate Performance
Measurement of Wireless Systems

Amirhossein Alimohammad and Saeed Fouladi Fard

Abstract— This paper presents the bit error rate (BER) per-
formance validation of digital baseband communication systems
on a field-programmable gate array (FPGA). The proposed
BER tester (BERT) integrates fundamental baseband signal
processing modules of a typical wireless communication system
along with a realistic fading channel simulator and an accurate
Gaussian noise generator onto a single FPGA to provide an
accelerated and repeatable test environment in a laboratory
setting. Using a developed graphical user interface, the error rate
performance of single- and multiple-antenna systems over a wide
range of parameters can be rapidly evaluated. The FPGA-based
BERT should reduce the need for time-consuming software-
based simulations, hence increasing the productivity. This
FPGA-based solution is significantly more cost effective than
conventional performance measurements made using expensive
commercially available test equipment and channel simulators.

Index Terms— Baseband performance validation, bit-error rate
tester (BERT), fading channel simulation, field-programmable
gate array (FPGA), Gaussian noise generator (GNG), Golay code,
maximum likelihood (ML).

I. MOTIVATION

THE pace of wireless system development using the latest
communication techniques is increasingly limited by the

design productivity. It is critical to verify the design charac-
teristics at the earliest possible stage of design (e.g., at the
baseband level) to minimize costly design iterations. At the
physical (PHY) layer, the bit error rate (BER) performance
metric is widely used to measure the reliability of the commu-
nication systems. Because BER properties are not in general
amenable to analysis, Monte Carlo (MC) simulation tech-
niques have been widely used to generate BER versus a range
of expected signal-to-noise ratio (SNR) conditions. However,
the execution times of software-based MC simulations of
the baseband layer on workstations can be extremely long,
especially for increasingly complex communication systems.
This is mainly because:

1) Many modern techniques, such as multiple-input–
multiple-output (MIMO) systems, rely on computa-
tionally intensive signal processing at the receiver.
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Therefore, bit-true software-based simulation of these
algorithms on workstations is becoming prohibitively
time consuming. In addition, for a communication sys-
tem specification with a set of target system require-
ments such as data throughput, received power, available
bandwidth, noise statistics, and a target error perfor-
mance, there are typically various potential solutions.
Each solution can use a different combination of sub-
system designs with different sets of input parameters.
Exploring the design space to achieve an optimized over-
all system solution that meets the target specifications
can involve a large number of options.

2) To estimate the BER performance of a communication
system with the MC simulation method, we have to
measure the BER over a large number of indepen-
dent problem instances [1]. While simulation of digital
communication systems under additive white Gaussian
noise (AWGN) channels is straightforward as the system
performance is averaged over a large number of inde-
pendent instances of noise and data, BER performance
measurement of wireless systems over time-varying
fading channels requires significantly longer simulation
times because of the dependence between the channel
instances. To accurately estimate the BER performance
of a communication system over a time-varying fading
channel, the error performance needs to be averaged not
only on independent instances of noise and data, but also
on the fading channel samples over a long period [1],
[2]. Such a performance evaluation can require several
weeks or months of software simulations.

Hardware simulators can accelerate the performance eval-
uation of communication systems compared with software
simulators by several orders of magnitude [3]–[6]. This
makes hardware-accelerated prototyping and validation of
the PHY layer as an increasingly attractive alternative. Pub-
lished hardware-based baseband BER measurement systems
[3], [7], [8] use field-programmable gate arrays (FPGAs) and
use model-based systems such as Simulink [9] to integrate
parameterizable IP blocks (such as conventional cores for
forward error correction) onto an FPGA. While using system-
level tools can eliminate the need for extensive hardware
knowledge and will usually shorten the design time, a sim-
ulation library may include only a set of basic digital com-
munication components and might not include modules, such
as new coding algorithms, for emerging technologies.Thus,
designers will still need to implement various communication
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Fig. 1. Block diagram of the implemented BERT system.

modules with compatible interfaces with other components. In
addition, most of the published BER testers (BERTs) verify the
performance under the linear AWGN channel [3], [7], [8],
which is a rather inadequate model for wireless mobile com-
munication systems. Fading channel models for mobile com-
munication systems must reproduce the statistical properties
of radio propagation environments [10]. Furthermore, although
several accurate Gaussian noise generators (GNGs) have been
reported over the last few years [11]–[13], published BERTs
use a noise generator that has a relatively poor accuracy. For
example, the accuracy of the GNG supplied by Xilinx [14]
degrades at the tails of the probability density function (pdf)
for |n| ≥ 4.8σn and the pdf accuracy of the AWGN in [3]
is limited to the interval [0.2σn%, 4.8σn%], where σ 2

n is the
noise power. For a reliable BER measurement, it is necessary
for the GNG to accurately generate samples at the tail of the
Gaussian pdf.

This paper presents the design and implementation of a
parameterizable baseband MIMO BER measurement system
on an FPGA. The proposed BERT integrates various signal
processing modules of a typical PHY layer, such as the channel
encoder, interleaver, modulator, demodulator, deinterleaver,
channel decoder, and symbol detector, along with our pre-
viously published realistic fading channel simulator [15]–[18]
and accurate GNG [13] onto a single FPGA to provide an
accelerated and repeatable test environment in the laboratory.

The rest of this paper is organized as follows. Section II
briefly presents the overall structure of the BERT, the digital
source module, and the process of encoding and decod-
ing data bits. Section III presents the architecture of the
interleaver and deinterleaver. Sections IV and V briefly dis-
cuss the fading channel simulator and the AWGN generator,
respectively. Section VI discusses the process of generating
received signals. Section VII presents the detector architec-
ture. Section VIII presents the BERT implementation and
simulation results. Finally, Section IX makes some concluding
remarks.

II. BERT STRUCTURE, DIGITAL SOURCE, AND

ENCODING/DECODING PROCESS

Fig. 1 shows the block diagram of the BER performance
measurement system. In the implemented BERT, source bits
are encoded using an extended Golay channel code [19] and

Fig. 2. Logic diagram of the CTG258 generator.

interleaved with a length 16 383 pseudorandom interleaver
[20]. Then, the interleaved bits are modulated to 4-quadratic-
amplitude modulation (4-QAM) symbols and passed through
the MIMO channel, where they are affected by spatiotem-
porally correlated MIMO fading variates, and corrupted with
AWGN. In the receiver, a maximum likelihood (ML) detector
tries to estimate the transmitted bits. In addition, perfect chan-
nel state information is assumed to be available to the receiver.
After ML detection, the bit stream is deinterleaved, decoded,
and compared with the transmitted bit stream. To demonstrate
the fading channel effects on the transmitted symbols, we
also implemented a single-antenna transmitter where the bits
can be modulated using different schemes (BPSK, QPSK,
4-pulse-amplitude modulation, 4-QAM, 8-phase-shift keying
(PSK), 16-PSK, 16-QAM, circular 8-QAM, and circular
16-QAM [20]). As shown in Fig. 1, the output of the single-
input–single-output (SISO) channel can be passed to an oscil-
loscope through a digital-to-analog converter. In addition, the
corrupted fading samples with AWGN can be monitored on
the oscilloscope screen as well.

For the digital information source, it is common to use
a pseudorandom number generator (PRNG). Linear feed-
back shift registers (LFSRs) are undoubtedly the best known
register-based PRNGs [21]. Because of their compactness,
fast bit-level operations, and the exponential increase of their
period with the width of the shift register, LFSRs have
enjoyed success in many hardware-based simulations and
digital circuit testing. However, LFSRs produce only a single
bit at each clock cycle, which is rather slow for very long-
running simulations. On the other hand, the sequences using
LFSRs with parallel outputs have undesirable correlations
[22]. In this system, we used combined Tausworthe generators
(CTGs), which has improved statistical properties [23]. The
logic diagram of a 64-bit CTG with five components and a
period of ρ ≈ 2258 (CTG258) is shown in Fig. 2, where �s
denotes a left shift of s bits, � l denotes a right shift of l bits,
C j , j = 1, . . . , 5, are the five constant values, and Sj are the
five 64-bit state variables initialized with five separate seeds.
It is recommended that the initial seeds Sj be large different
values [24].

The generated data source is encoded using the Encoder
module. Channel codes or error control codes are used in
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Algorithm 1 IMLD decoding for the extended Golay code

communication systems to detect and possibly correct the
errors that occur during data transmission. This is accom-
plished by adding redundant data to the transmitted message.
In our prototype BERT system, we used the extended binary
Golay code, which is a linear binary block code [19]. This
code can be generated by the 12 × 24 generator matrix
G = [I,B], where I is the 12 × 12 identity matrix and B is
given by

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 1 0 1 1 0 1 1 1 1
0 0 1 0 1 1 0 1 1 1 0 1
0 1 0 1 1 0 1 1 1 0 0 1
1 0 1 1 0 1 1 1 0 0 0 1
0 1 1 0 1 1 1 0 0 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The code rate R for the (24, 12) extended Golay code is 1/2.
This code has minimum distance dmin = 8 and can correct up
to three errors.

Encoding the data bits using the Golay code is straightfor-
ward. Assuming u = [u11, u10, . . . , u0] to be the vector of 12
source bits, the coded bits can be calculated as v = [u,p] =
uG in the Galois field of two elements GF(2) [19], where
p is the length 12 row vector of parity bits. To decode the
extended binary Golay code, we used the imperfect maximum
likelihood decoding (IMLD) algorithm [25], which attempts
to find all of the error patterns e of weight at most three. The
error pattern e is denoted as e = [e1, e0], where e0 and e1
are the lower and upper parts of e, each with 12 bits. Assume
that w = [w23, w22, . . . , w0] represents the received vector, bi

denotes the i th row of B, and let oi be a row vector of length 12
with a one in the i th position and zeros elsewhere. The IMLD
algorithm tries to find the error pattern of the received vector
by computing the syndrome x = wP, where P = GT is the
parity check matrix and (·)T denotes the transpose of a matrix.
Algorithm 1 describes the IMLD decoding for the extended
Golay code, which can correct all of the error patterns with
one, two, and three errors. More error patterns can also
be detected and reported for requesting retransmission. The
pipelined datapath of the imperfect ML decoder based on
Algorithm 1 is implemented at the behavioral level using the
Verilog hardware description language.

Fig. 3. Datapath of the implemented (a) interleaver and (b) deinterleaver.

III. INTERLEAVER AND DE-INTERLEAVER

A burst of errors, which typically arises in the channel
when the signal experiences deep fades, can be overwhelming
for the error control code that can only correct a certain
number of errors in a block of data samples. This problem
can be alleviated by randomizing the distribution of errors in
a block of data using interleavers [20]. Interleaving spreads
the transmitted data over time, results in significant improve-
ments in finding and correcting errors at the error correction
decoder.

For our MIMO communication system, we implemented a
pseudorandom interleaver of length 16 383. A pseudorandom
interleaver is a variation of a block interleaver where coded
bits are written linearly into a memory and read out randomly
based on a pseudorandom sequence. Fig. 3 shows the datapath
of the implemented pseudorandom interleaver and deinter-
leaver. In the interleaver, a 14-bit counter is used to write the
coded input bits into a 16 384×1 memory. This counter counts
linearly from 1 to 16 383 and goes back to 1. At the output, a
14-bit LFSR is used to read out the coded bits randomly from
the memory to decrease the correlation between the encoded
samples. Notice that the counter does not generate 0 as zero
is not among the values that are generated by an LFSR, hence
the interleaver length is 16 384 − 1. In the deinterleaver, the
reverse operation is performed, where the received bits are
written randomly into a memory using the same pseudorandom
sequence and later read out using a circular counter that counts
from 1 to 16 383.

When a new bit bin is passed to the interleaver (shown by
the newBit signal connected to the write enable WE port), it
is written into the memory location addressed by the counter
CNTR and the counter is incremented for the next cycle. Then,
an output bit Do is read out from the location determined by
the current state of the LFSR. The LFSR is then updated for
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Fig. 4. 2 × 2 MIMO channel.

the next cycle. Note that the input bits must be written into
the memory before reading the output bits to maintain the
integrity of the data sequence. The inverse operation happens
in the deinterleaver. When a new bit is ready to be written into
the memory, the deinterleaver first reads one bit from CNTR
location of the memory and informs the next stage using the
bitReady signal. Here, the data is read out of the memory
and stored in the bOut register before writing the input bit.
Then, the deinterleaver writes the input bit into the memory
and updates the LFSR for the next cycle. The counter CNTR
is also updated for the next cycle.

IV. SPATIOTEMPORALLY CORRELATED FADING

CHANNEL SIMULATOR

The radio propagation environment introduces significant
impairments and sources of interference into wireless com-
munications. To provide a realistic fading channel model
and repeatable experimental results in a laboratory setting, a
baseband fading channel simulator must accurately reproduce
the statistical properties of time-varying radio propagation
environments. Fig. 4 shows a 2 × 2 MIMO channel, where
the element hjk(t), j = 1, . . . , nR , k = 1, . . . , nT , represents
the complex-valued fading gain between the kth transmit
antenna and the j th receive antenna at any time t , and nT

and nR are the number of transmit and receive antennas,
respectively. A fading channel gain is commonly modeled
as a complex Gaussian wide-sense stationary uncorrelated
scattering process hjk(t) = hjk,i (t) + jhjk,q(t), where hjk,i

and hjk,q denote the in-phase and quadrature components
of the fading channel gain, respectively, and the envelope
|hjk(t)| follows the Rayleigh distribution [26]. The amplitude
statistics for each complex-valued fading coefficient hjk(t)
may follow a Rician distribution if a line-of-sight path is
present [27]. The Nakagami-m distribution has also been used
to model fading that is more or less severe than Rayleigh
fading [28].

To generate temporally correlated complex-valued Gaussian
fading gains {hjk(t)}, we used the sum-of-sinusoids (SOS)
fading channel model, where the fading channel gain is formed
by superimposing N sinusoidal waveforms with amplitudes,
frequencies, and phases that are selected appropriately to
generate the desired statistical properties of radio propagation
environments accurately [29]. Using the novel SOS-based
fading channel model in [15]–[18], each complex discrete-
time Rayleigh fading process hjk[m] = hjk,i [m] + jhjk,q[m]
is described as

hjk,i [m] =
√

2

N

N∑
n=1

cos
(
2π fD Ts cos(αn[m])m + ϕn[m])

hjk,q [m] =
√

2

N

N∑
n=1

cos
(
2π fDTs sin(αn[m])m + ψn[m])

where m = 0, 1, 2, · · · is the discrete time index, fD is the
maximum Doppler frequency for any path, Ts is the symbol
period, αn[m] = (2πn −π + θ [m])/4N is the angle of arrival
of the nth sinusoid, and ϕn[m] and ψn[m] are the phases of the
in-phase and quadrature components, respectively, of the nth
sinusoid. Note that in this model, the ψn[m], ϕn[m], and θ [m]
are mutually independent and uniformly distributed random
walk processes (RWPs) over [−π, π) for all n, instead of
uniformly distributed random variables, which are widely used
in most of the SOS-based fading channel models. It was shown
in [15] and [16] that the time-averaged statistical properties of
the generated fading samples do indeed match the reference
theoretical properties when θ , ϕn , and ψn are RWPs.

In a typical wireless communication scenario, the Doppler
frequency fD is significantly smaller than the signal sample
rate Fs = 1/Ts . This allows us to design much of the fading
channel simulator at a much lower sample rate and, thereby
reduce the required hardware resources. Fading samples gen-
erated at the slower sample rate are then interpolated to
provide samples at the desired output sample rate. Therefore,
instead of generating fading samples directly, the discrete
differences between subsequent fading samples (i.e., djk =
hjk[m + 1]− hjk[m]) are generated at a low sample rate using
a time-multiplexed datapath. Fading channel simulator is a
relatively complex module. The detailed description of the
fading channel model and the statistical analysis of generated
fading variates can be found in [15] and [16]. The compact
hardware architecture of the fading channel simulator were
presented in [17] and [18].

While the generated fading samples {hjk(t)} are correlated
in time, the fading channel simulator is extended to model
the spatial correlations that exist between the antennas in
MIMO systems. To obtain the space-time (ST) correlation
characteristics, a temporally correlated random process, for
example, generated using the fading variate generator in [18],
can be followed by linear transformations to be made spa-
tially correlated [30]. The spatial structure of the channel
is commonly characterized by channel correlation matrices.
Our BERT supports the four analytical narrowband models of
the fading coefficients, the independent identically distributed
(i.i.d.) flat-fading model [2], the Kronecker model [31], the
Weichselberger model [32], and the virtual channel repre-
sentation (VCR) model [33], which are widely accepted by
the research community for performance analysis [34]. For
example, the Kronecker model can be expressed as

H = UGV (1)

where H is the nR × nT spatiotemporally correlated fading
channel matrix. G is the nR × nT i.i.d. matrix with zero-
mean unit variance circularly -symmetric complex Gaussian
distributed entries, U = R1/2

R X , V = (
R1/2

T X

)T , RTx, and RRx
denote the nT × nT transmit and nR × nR receive correlation
matrices, respectively. The Weichselberger model and the VCR
model can be written as

H = U(W � G)V (2)
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Fig. 5. Architecture of the spatiotemporally correlated fading variate
generator.

where G is multiplied by the nR × nT matrix W using the
element-wise Schur–Hadamard multiplication operation �.

To introduce spatial correlations between the temporally
correlated fading samples, instead of performing the matrix
calculations on the high-frequency samples, similarly to the
generation of temporally correlated fading samples, the matrix
operations are performed on the low-frequency fading samples
and later up sample the resulting streams with appropriate
interpolators. For an efficient implementation of the spatial
correlation characteristics of analytical MIMO fading chan-
nels, we designed a pipelined architecture, as shown in Fig. 5.
The datapath receives the difference fading samples from the
fading variate generator described in [18], performs the matrix
operations of either (1) or (2) on the generated difference
fading channel matrix G = D and passes the spatiotemporally
correlated fading samples to the next stage for interpolation.

The three RAMs uRAM, wRAM, and vRAM are used to
keep the elements of the U, W, and V matrices, respectively.
In addition, the dual-port memory tRAM is used as a register
bank for holding the intermediate results. The fading variate
generator module generates the discrete difference between
two subsequent low-frequency fading samples (i.e., the current
sample and the previous sample) for each transmit-receive
antenna pair using the fading channel simulator presented
in [18]. The core of this architecture is the arithmetic unit
(AU) datapath, which performs basic complex arithmetic
operations, such as complex products, complex additions,
and also real by complex products. A brief explanation of
the hardware architecture for the AU can be found in [35].
The details of the interpolator architecture are presented in
[15] and [18].

V. AWGN GENERATOR

To generate Gaussian noise samples, we use the Box–Muller
(BM) algorithm [36]. The inputs to the BM algorithm are
two independent uniformly distributed pseudorandom numbers
(PRNs), u1, u2 ∈ (0, 1). The outputs n1 and n2 are the two
independent samples from a zero-mean unit-variance Gaussian

1
u 10

)
ln
(

2
1u

−

1995 1u

Fig. 6. (a) Plot of f (u1) = √−2 ln(u1). (b) Nonlinear behavior of f (u1)
in the vicinity of u1 = 1.

distribution that can be obtained as
{

n1 = √−2 ln(u1)× sin(2πu2)

n2 = √−2 ln(u1)× cos(2πu2).
(3)

Approximating the sine and cosine functions is straightfor-
ward. The quarter cycle of the sine (cosine) function is
partitioned into 1024 uniform segments. The precomputed
values are stored in two memory blocks. Using the symmetry
of the trigonometric functions, the sine and cosine values
over (0, 2π) can then be approximated relatively accurately
[13], [27]. To approximate f (u1) = √−2 ln(u1) between
u1 ∈ (0, 1), we use segmentation and polynomial curve
fitting techniques. We note that the function f (u1) has two
high-slope regions: in the vicinity of u1 = 0 and close to
u1 = 1, as shown in Fig. 6. This means that a small input
change may lead to a (very) large output change. Thus, the
input domains near zero and one need smaller segments than
the relatively linear regions in the middle of the domain.
Therefore, we used a hybrid segmentation scheme in which
both logarithmic and uniform segmentations are used [13].
First, the domain (0, 1) of u1 is divided into two subintervals,
r0 ∈ (0, 0.5) and r1 ∈ [0.5, 1). Subintervals r0 and r1 are
then segmented logarithmically from u1 = 0.5 down to zero
and up to one, respectively, into 31 × 2 = 62 segments.
Then, each logarithmic segment is subdivided uniformly into
eight subsegments. The value of f (u1) within each of the
62 × 8 segments can then be approximated more efficiently
using separate linear polynomials f (u1) = a × u1 + b. The
coefficients a and b for each segment were calculated using
the orthogonal least squares fit method [37] to minimize the
residual error. The number of segments depends on the desired
accuracy and on the size of memory that is available to store
the coefficients of polynomials.

An important point to note is that the coefficients of f (u1)
have extremely large values when u1 is in the vicinity of
zero or one. Storing the large coefficient values of f (u1) on-
chip requires relatively large memories, increases the hardware
complexity and likely slows down the variate generation rate.
To overcome these problems, the suitably scaled coefficients ã
and b̃ for all segments are stored in the Coefficient Memory, as
shown in Fig. 7(a). For a given PRN input u1, the Addressing
Unit calculates the scaled value of u1 and generates a signed
value of ũ1 and also produces the segment address. Thus, the
scaled coefficients of the linear piece can be addressed and
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Fig. 7. (a) Datapath for generating properly scaled Gaussian noise samples.
(b) Gaussian pdf compared with the pdf of 1011 generated Gaussian samples
with σn = 1.

read directly from the Coefficient Memory to approximate
f (ũ1) = (ã × ũ1)+ b̃ [13], [27].

To evaluate the error rate over various SNR values, we
normalize the average energy of constellation symbols to
unity (i.e., Es = 1) and only the power of the generated
White Gaussian noise samples (with zero mean and variance
σ 2

n = 1) need to be scaled for the desired noise variance
σn = √

(2No/Eb log2 M), where M is the size of the signal
constellation and Eb is the energy per bit. One can see that
the SNR is related to Eb/No as

Eb

No
= Es

σ 2
n
.

2

log2 M
= 2 SNR

log2 M

where Es = log2M Eb is the energy per symbol and the
noise power (variance) is σ 2

n = No/2. Therefore, the White
Gaussian noise samples are multiplied by σn to support
Gaussian variates with variable noise variances. Fig. 7(b)
superimposes the pdf of 1011 generated Gaussian samples on
top of a pdf plot of the ideal normal distribution. The two
plots are indistinguishable over ±6.6σn. Various statistical
characteristics of the generated Gaussian samples are also
evaluated and confirmed using multiple standard statistical
goodness-of-fit tests in [13].

VI. GENERATION OF RECEIVED SAMPLES

In the implemented 2×2 MIMO system, 4-QAM modulated
transmitted symbols s are passed through the fading channel
H. The complex-valued received samples r = Hs + n can be
expressed as (

r1
r2

)
=

(
h11 h12
h21 h22

)(
s1
s2

)
+

(
n1
n2

)
(4)

where hjk , j, k ∈ {1, 2} is the complex-valued channel gain
between kth transmit and j th receive antenna, s j is the trans-
mitted 4-QAM symbol from the j th transmit antenna, and {n j }
are the AWGN samples. Decomposing the complex received
samples into their in-phase and quadrature components, we
can rewrite (4) as⎛
⎜⎜⎝

r1,i
r2,i
r1,q
r2,,q

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

h11,i h12,i −h11,q −h12,q
h21,i h22,i −h21,q −h22,q
h11,q h12,q h11,i h12,i
h21,q h22,q h21,i h22,i

⎞
⎟⎟⎠

⎛
⎜⎜⎝

s1,i
s2,i
s1,q
s2,q

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

n1,i
n2,i
n1,q
n2,q

⎞
⎟⎟⎠.

(5)

Fig. 8. Datapath and timing diagram of the received symbol generation.
Note that add1 = add2 and add3 = add4.

The quadrature components of the fading gains hjk,i and
hjk,q , the input samples s j,i and s j,q , and the noise samples
n j,i and n j,q are assumed to be available and constant during
each cycle. The fading gains and the AWGN samples are
generated using the fading variate generator and the GNG
presented in Sections IV and V, respectively.

Fig. 8 shows the datapath and the timing diagram of the
received symbol generation. Because the in-phase and the
quadrature components of the 4-QAM symbols comprise only
+1 and −1 values, the Hs expression can be implemented
without using multipliers. As Fig. 8 shows, this block has been
implemented with four accumulators with add/subtract inputs.
The accumulators acc1, acc2, acc3, and acc4 are reset at the
beginning of each cycle. The accumulator adds (subtracts)
the input to (from) its current value if the add input is 1(0).
For the quadrature components of the input, the digital value
one is assumed to represent arithmetic +1 and the digital
value zero represents arithmetic value −1. To calculate r1,i ,
the accumulator acc1 adds/subtracts the fading gains h11,i ,
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Fig. 9. Datapath of the implemented ML detector for the 2 × 2 MIMO system with 4-QAM modulated symbols.

h12,i , h11,q , h12,q according to s1,i , s2,i , not(s1,q), not(s2,q),
respectively, and adds n1,i . As shown in Fig. 8, r1,q , r2,i , and
r2,q are calculated similarly.

VII. ML DETECTOR

The task of the MIMO detector is to estimate the symbol
vector s from the received signal vector r. At the receiver,
assuming that the channel matrix H is known (or estimated
perfectly), an ML detector computes an estimate ŝ for each
transmitted ST symbol

ŝ = arg min
s∈QnT

{∥∥r − H s
∥∥}

(6)

where Q denotes the signal constellation and the minimum
is sought over all possible nT -element ST symbols s ∈ QnT

[38]. ML detection provides an optimal error rate performance.
Assuming that the transmitted symbols are modulated with
4-QAM scheme, the ML detector for a 2 × 2 MIMO channel
can be expressed as

∥∥∥∥∥∥∥∥∥

⎛
⎜⎜⎜⎝

r1,i

r2,i

r1,q

r2,q

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

h11,i h12,i −h11,q −h12,q

h21,i h22,i −h21,q −h22,q

h11,q h12,q h11,i h12,i

h21,q h22,q h21,i h22,i

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

s1,i

s2,i

s1,q

s2,q

⎞
⎟⎟⎟⎠

∥∥∥∥∥∥∥∥∥

2

= (
r1,i − s1,i h11,i − s2,i h12,i + s1,qh11,q + s1,qh12,q

)2

+ (
r2,i − s1,i h21,i − s2,i h22,i + s1,qh21,q + s1,qh22,q

)2

+ (
r1,q − s1,i h11,q − s2,i h12,q − s1,qh11,i − s1,qh12,i

)2

+ (
r2,q − s1,i h21,q − s2,i h22,q − s1,qh21,i − s1,qh22,i

)2
.

(7)

Fig. 9 shows the datapath of the implemented ML detec-
tor. In this figure, the Section cost function calculates

c(s) = ‖r − Hs‖ according to (7). The quadrature components
of the tentative samples, (i.e., s1,i , s1,q , s2,i , and s2,q ) are
modulated with the fading gains and subtracted from the
received input signal. For example, the first branch of the
cost function Section (including the adder/subtracters U0, U4,
U8, U12 and the multiplier U16) calculates (r1,i − s1,i h11,i −
s2,i h12,i + s1,qh11,q + s1,qh12,q)

2.
For a 2 × 2 MIMO system with 4-QAM modulated sym-

bols, there are 42 tentative symbols in the search space.
According to (7), four multiplications are required for cal-
culating the cost of each of the tentative symbols. Because
of the resource constraints in the chosen FPGA, as shown
in Fig. 9, we used only four multipliers for the calculation
of the cost function and shared the pipelined datapath for
calculating the 16 costs. The 16 clock cycle latency of
the ML detector is the bottleneck that limits the symbol
transmission rate of the MIMO communication system to
Fclk/16 symbols per second, where Fclk denotes the clock
frequency.

The FIFO section in the ML datapath delays each of the
tentative transmitted symbols according to the latency of the
cost function datapath so that the cost of each tentative symbol
can be augmented with its corresponding symbol. The section
search, finds the symbol sHat with the minimum cost, which
is the output of the ML detector. Notice that three comparators
are used in the search section for finding the tentative symbol
with the minimum cost. It was due to the one clock cycle
latency of the comparators that the sequence of the costs of
tentative symbols was divided into two substreams. In Fig. 9,
the minimum costs of the two substreams (along with the
tentative symbols corresponding to the minimum costs) are
stored in the M1 and M2 registers. The final ML solution,
sHat, is chosen based on the minimum cost by comparing the
final values of M1 and M2.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

Fig. 10. Test setup for evaluating the baseband performance of MIMO
systems on an FPGA board.

VIII. HARDWARE IMPLEMENTATION AND

SIMULATION RESULTS

Fig. 10 shows the test setup for evaluating the base-
band performance of the implemented MIMO system on the
GVA-290 board [39] along with the power source, oscil-
loscope, and the control computer. This board contains
two Xilinx Virtex XCV2000E-BG560-6 FPGAs, two Xilinx
Spartan-II FPGAs, four 100 Ms/s analog-to-digital converters,
and four 100 Ms/s digital-to-analog converters. The GVA-
290 board is interfaced with the control computer through
the parallel port. We implemented the entire parameteriz-
able BERT for a 2 × 2 MIMO system on only one of
the Xilinx Virtex-E FPGAs [40], [41]. This FPGA includes
19 200 configurable slices, 160 block memories (BRAMs)
with no built-in dedicated multipliers. The parameterizable
BERT enables the designers to verify and optimize the
transmitter and the receiver algorithms under a wide vari-
ety of system parameters such as channel conditions, noise
models, modulations, and coding schemes. We developed a
GUI through which the BERT can be easily configured for
different test scenarios. For example, we can vary the SNR
and set the spatial correlation parameters of the analytical
MIMO fading channel models. The BERT supports different
sample rates and modulation schemes. We can also compare
different signal processing algorithms to quantify the BER
performance versus system resource tradeoffs. The program
can be configured to stop the simulation based on a combina-
tion of different criteria including the number of transmitted
bits, number of errors, and transmission time. The measured
BER performance is exported to MATLAB for graphical
display.

Fig. 11 shows the BER performance measurement of the
implemented MIMO system. In addition, the floating-point
computer simulation of the i.i.d. channel model is shown.
To estimate each BER point at each SNR, we measured the
performance over at least 1023 seconds of signal transmission
on the hardware platform, and when at least 100 errors were
collected from the Golay decoder output. In Fig. 11, we can
verify that the hardware generated BER results accurately
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Fig. 11. BER performance of a 2 × 2 coded MIMO system measured using
the FPGA-based BERT for different channel models.

TABLE I

CHARACTERISTICS OF DIFFERENT MODULES ON

A XILINX VIRTEX-E FPGA

match the computer generated BER performance. Even though
software development of fixed-point baseband signal process-
ing modules is faster than hardware design and implementation
of the BERT, accurate performance measurement of complex
baseband sections using a bit-true model on time-varying
channels is a computationally daunting process. For example,
10 s of BER measurements using our hardware platform take
more than three days of a bit-true software simulation in C
running on a 3.6-GHz dual-core Pentium processor with 1 GB
of RAM. This corresponds to a speed-up of over 25 000.
As shown in Fig. 11, due to the great computational com-
plexity of the bit-true BER performance measurement using
software-based simulation, the computer simulation results
were given up at 20 dB SNR. Note that simulation times
vary significantly and depend on various factors, such as the
complexity of the baseband signal processing algorithms (e.g.,
modulation order, error control codes, detection algorithms,
and so on) and the accuracy of the implemented fading channel
models [42].

Table I shows the FPGA implementation results of different
components. The synthesis results are provided for the Xilinx
Virtex-E FPGA. From the results presented in this table, we
can conclude that the implemented MIMO communication
system (source, encoder, interleaver, detector, deinterleaver,
and decoder) uses less than 9% of the available configurable
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Fig. 12. Constellation plot of the distorted symbols generated by the (a) SISO
channel and (b) 2 × 2 MIMO channel.

slices on a Virtex-E FPGA while the rest of the system (fading
simulator, BER performance measurement, initialization, and
interfacing modules) consume a much larger portion of the
available resources (more than 60%). On a Xilinx Virtex-E
FPGA, our parameterizable BERT for a 2 × 2 MIMO system
uses 69% of the configurable slices, 29% of the BRAMs, and
it operates at 52 MHz.

The effects of fading can be conveniently visualized using
a constellation plot on an oscilloscope. Fig. 12 shows the two
outputs of the fading simulation platform on the oscilloscope
screen. The Doppler frequency for these simulations was set
to fD = 0.5 Hz so that the changes in the scatter-plot could be
easily followed. In Fig. 12(a), the oscilloscope screen shows
the scatter-plot of the noisy output of a SISO channel. In
this figure, 8-PSK modulated samples are passed through a
two-path SISO fading channel and corrupted with AWGN.
Fig. 12(b) shows the two noisy outputs of a the 2 × 2 MIMO
channel where the transmitted bits are modulated with 4-QAM
and the SNR is set to 20 dB.

The implemented fading simulation platform and the BER
performance measurement cores along with the analog and
digital access to different parts of the system on a GVA-290
board can be used for testing and validation of more complex
wireless communication systems. More specifically, with one
Virtex-E FPGA dedicated to fading simulation and interfacing,
the other on-board FPGAs can be used for a rapid prototyping
of wireless communication systems. In addition, the imple-
mented fading simulation and BER performance measurement
platform can be easily adapted to faster and more recent
FPGA boards for rapid prototyping of wireless communication
system in baseband and intermediate frequency.

IX. CONCLUSION

Hardware-accelerated validation is essential to speed up
the characterization of computationally intensive and rapidly
evolving modern wireless communication systems. This paper
presented a parameterizable BERT for a typical single- and
multiple-antenna digital baseband communication system on
a single FPGA. The BERT uses a MIMO realistic fading
channel simulator and a high-quality GNG for faithful per-
formance validations in a laboratory setting. By mapping the
computationally intensive signal processing algorithms in the
simulation chain to dedicated hardware, the simulation time
was reduced by over four orders of magnitude. This BERT
system is flexible enough to be reconfigured for adapting the

new specifications of emerging standards and is scalable to
support various configurations. In addition, this measurement
system demonstrates how rapid prototyping can be used to
minimize reliance on expensive test equipment and time-
consuming field trials.
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