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A Compact Architecture for Simulation of
Spatio-Temporally Correlated MIMO Fading Channels

Amirhossein Alimohammad and Saeed Fouladi Fard

Abstract—Radio channel impairments have a dramatic im-
pact on the performance of wireless communication systems
and hence, utilizing realistic radio channel models is crucial
for the accurate performance validation of emerging wireless
systems. However, faithful radio propagation channel models
are computationally-intensive for software-based simulations,
especially for multiple antenna systems. This article presents
the design and implementation of a multiple-input multiple-
output (MIMO) baseband fading channel simulator on a field-
programmable gate array (FPGA). In addition to the well-
known independent and identically distributed channel model,
the simulator supports three spatio-temporally correlated fading
channel models which are commonly used for performance
analysis. The implemented MIMO fading channel simulator is
compact enough to be integrated with the baseband design under
test on the same FPGA for accelerated performance validations.

Index Terms—Spatio-temporally correlated fading channels,
channel simulation, Kronecker model, Weichselberger model,
virtual channel representation model, multiple-input multiple-
output (MIMO), field-programmable gate array (FPGA).

Notations: (·)T denotes matrix transposition, (·)H denotes
the Hermitian of a matrix, (·)1/2 denotes the matrix square
root, tr{·} denotes the trace of a matrix, � denotes element-
wise Schur-Hadamard multiplication, �x� denotes the largest
integer number that is smaller than x.

I. MOTIVATION

In the rapidly evolving area of digital communications, new
wireless systems must be developed in short design cycles.
The most accurate performance of wireless communication
systems can be measured by building a full prototype of
the wireless system and performing experiments at various
locations under different conditions in the field. While field
testing allows credible performance verification under real-
world radio channels, it is preferable to gain insight into
system behavior and reliably estimate the performance of the
eventual solution prior to the development and deployment of
prototype systems in real-world environments.

Simulation is indispensable for the design and performance
evaluation of new algorithms before the actual system is
implemented. One of the computationally-intensive processes
in the design and verification cycle of wireless communication
systems is the performance validation of the physical (PHY)
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layer under various radio propagation conditions. This is
mainly because the baseband layer of emerging broadband
communication systems is significantly more complex than the
baseband layer of the preceding generations [1]. For example,
the long term evolution (LTE) universal mobile telecommu-
nications system (UMTS) supports significantly higher peak
data rates (100 Mbps downlink and 50 Mbps uplink), flexible
bandwidth options (from 1.4 MHz to 20 MHz), and multi-
antenna configurations (ranging from two to four antennas
per device). In addition, due to advances in communica-
tion techniques, the number of possible configurations and
propagation scenarios in which increasingly complex wireless
communication systems need to operate and hence, must be
verified has increased dramatically. For example, a wireless
system should be able to operate reliably in various radio
propagation environments (e.g., indoor and outdoor), adapt
to unpredictable channel conditions by changing its transmis-
sion scheme (e.g., different modulation and/or code rates),
and select alternative detection techniques. Therefore, the
performance of increasingly complex wireless systems must
be evaluated under a relatively large number of settings and
options. As the number of possible configurations in emerging
standards increases (e.g., more than 300 modulation and cod-
ing schemes are present in the IEEE 802.11n standard), timely
design and validation of emerging broadband communication
systems becomes significantly more challenging. In addition,
the bit-true software-based simulation of the baseband layer
on workstations is becoming prohibitively time-consuming.
As the general purpose processors are not efficient for the
bit-level simulation of baseband signal processing algorithms,
this makes hardware-accelerated prototyping and validation
an increasingly attractive alternative [2], [3]. Hardware-based
bit error rate testers (BERTs) can accelerate the performance
evaluation of wireless communication systems by several
orders of magnitude compared to conventional software-based
simulations [4]–[9], hence increasing designer productivity.

The performance of a wireless communication system is
highly dependent on the radio channel characteristics and
therefore, it is crucial to use accurate radio channel models
for reliable evaluations. However, realistic radio propagation
channel models are computationally-daunting processes, es-
pecially for multiple-input multiple-output (MIMO) systems.
Commercial fading channel emulators can be used to generate
accurate radio propagation conditions in a laboratory setting,
however they are relatively costly [10], [11]. Recently several
realizations of MIMO fading channel simulators on field-
programmable gate arrays (FPGAs) have been proposed as
a low-cost hardware-based solution [12]–[16].

This article presents the design and implementation of a



MIMO baseband fading channel simulator on a single FPGA.
The simulator utilizes the fading variate generator from [15]
and realizes a new matrix processor for the compact imple-
mentation of four MIMO fading channel models, which are
widely accepted by the research community for performance
analysis [17]. Also, an accurate linear interpolator is designed
and implemented to generate the final fading samples at the
desired baseband rate. While a hardware-based fading chan-
nel simulator can speed up the validation of communication
systems over a wide range of radio channel conditions, to
further accelerate performance validation at the PHY layer,
other computationally-intensive signal processing modules can
also be implemented on the same state-of-the-art FPGA [2],
[7], [18]. The proposed MIMO channel simulator is compact
enough that can be implemented with the baseband design
under test on the same low-cost FPGA for bit error rate (BER)
performance validation of emerging wireless systems under
various channel conditions at hardware speeds.

The rest of this article is organized as follows. Section II
briefly reviews four analytical MIMO fading channel models.
Section III presents the process of spatio-temporally correlated
MIMO fading variate generation along with its compact hard-
ware implementation. Section IV discusses the interpolator
design and its novel hardware structure. Section V presents
the application of the implemented MIMO fading channel
simulator in a developed BER performance measurement
system. Section VI makes some concluding remarks.

II. ANALYTICAL MIMO FADING CHANNEL MODELS

In a frequency non-selective MIMO system with multiple
omnidirectional antennas at the transmitter and receiver [19],
the received signal at time t can be represented as

y(t) = H(t)s(t) + n(t), (1)

where H(t) is a time-variant nR × nT MIMO fading channel
matrix between nT transmit antennas and nR receive antennas,
s(t) is the nT × 1 transmitted signal vector, n(t) denotes the
nR × 1 noise and interference vector, and y(t) is the nR × 1
received vector. The element of the channel matrix h lp(t),
l = 1, . . . , nR, p = 1, . . . , nT , represents the complex-valued
fading gain between the p-th transmit antenna and the l-th
receive antenna at any time t.

Analytical fading channel models were proposed by [20] in
the framework of the IST SATURN project [?] and have also
been used in the IEEE 802.11 standard (Task Group n) [21].
In contrast to propagation-based models [22], [23], analytical
fading channel models are site-independent and character-
ize each hlp(t) mathematically without explicitly accounting
for physical wave propagations. Nevertheless, one can use
analytical fading channel models in combination with the
propagation-based models. Several different analytical models
have been proposed in the literature. They can be sub-classified
as (a) correlation-based models, which are well-suited for
system design and performance analysis of baseband signal
processing algorithms [17], [22], such as the independent and
identically distributed (i.i.d.) model [19], the Kronecker model
[24], the Weichselberger model [25], and (b) propagation-
motivated models, such as the virtual channel representation

(VCR) model [26], the finite scatter model [27], and the
maximum entropy model [28]. In this work, we focus on four
fading channel models: the i.i.d. model, the Kronecker model,
the Weichselberger model, and the VCR model.

The i.i.d. flat-fading channel model assumes that the fades
between pairs of transmit and receive antennas are independent
and identically distributed. This model corresponds to isotropic
scattering and deployment of largely spaced omni-directional
antennas [29], [30]. Such a channel arises if both the trans-
mitter and receiver exist in a rich-scattering environment. The
entries {hlp(t)} of an i.i.d. channel matrix H(t) are zero mean,
unit variance temporally-correlated complex Gaussian random
variables while no spatial correlation is assumed between
different sub-channels {hp}, where hp denotes the column
vector of complex transfer gains from the p-th transmit antenna
to all nR receive antennas.

In a typical MIMO scenario, however, the fades usually
exhibit spatial correlations between different transmit-receive
antenna pairs [31]. Propagation characteristics of the environ-
ment, such as clustered scattering, and the physical parameters
of antennas, such as spacing and orientation, affect the spatial
correlations between different antennas. For efficient design
of the baseband signal processing algorithms, it is essential
to utilize faithful MIMO channel models that reproduce the
spatio-temporal characteristics of MIMO radio channels accu-
rately. To obtain the space-time correlation characteristics, a
temporally-correlated random process can be followed by a
linear transformation to be made spatio-temporally correlated
[31], as shown in Fig. 1. Therefore, analytical MIMO channel
models can be simulated by introducing specific correlation
between zero-mean i.i.d. Gaussian samples. The spatial struc-
ture of the channel is commonly characterized by channel
correlation matrices.
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Fig. 1. 4×4 MIMO channel.

The Kronecker model considers separate spatial correlation
properties (matrices) at the transmitter and receiver sides and
can be expressed as

H = UGV, (2)

where G is the nR × nT i.i.d. matrix with zero-mean, unit
variance circularly-symmetric complex Gaussian distributed
entries (i.e., spatially-independent rich-scattering MIMO fad-
ing channel), U = R1/2

Rx , V = (R1/2
Tx )T , where RTx and RRx



denote the nT ×nT transmit and nR ×nR receive correlation
matrices, respectively [24].

The Weichselberger model relaxes the separability restric-
tion of the Kronecker model and jointly models the correlation
properties at the transmitter and receiver as

H = U(W � G)V, (3)

where W = Ω̃W is the element-wise square root of the
power coupling matrix Ω, whose positive and real-valued
elements determine the average power-coupling between the
p-th transmit and the l-th receive direction. Also, U = URx,
V = UT

Tx, where UTx and URx are complex unitary matrices
containing eigenvectors of RTx and RRx, respectively [25].
The RTx and RRx matrices can be obtained using the eigen-
value decomposition of the transmit and receive correlation
matrices as follows:

RTx = UTxΛTxUH
Tx,

RRx = URxΛRxUH
Rx.

In contrast to the two prior models, the VCR models a
MIMO channel in the beamspace instead of the eigenspace
[26]. In particular, the eigenvectors are replaced by fixed and
predefined steering vectors as

H = U(W � G)V, (4)

where W = Ω̃V and elements of Ω̃ denote the coupling of
each scatterer. Also, U = ARx, V = AH

Tx, where ATx and
ARx contain steering vectors for nT virtual transmit and nR

virtual receive scatterers .

III. SPATIO-TEMPORALLY CORRELATED

MIMO FADING VARIATE GENERATION

In a typical wireless communication scenario, the maximum
Doppler frequency fD is significantly smaller than the signal
sample rate Fs = 1/Ts. This allows us to design much of the
fading variate generator at a significantly lower sample rate
and thereby reduce the required hardware resources by using
time-multiplexed datapaths. Fading samples generated at the
slower sample rate F̂s are then oversampled and interpolated
I times to provide samples at the output rate Fs = I × F̂s.
We note that the discrete-time interpolator output at time
mI + k, for m = 0, 1, 2, · · · and k = 0, 1, · · · , I − 1, is
given recursively as

hlp[mI + k] =

(
hlp[(m + 1)I] − hlp[mI]

)
k

I
+ hlp[mI]

=
i∑

j=0

hlp[(m + 1)I] − hlp[mI]
I

+hlp[mI], (5)

where each element hlp[n] denotes the time-variant channel
gain between the pth transmit antenna and the l th receive
antenna [14], [32]. The quadrature components of channel
gains hlp[n] are independent but temporally-correlated and can
be generated using the fading variate generator described in
[15]. The amplitude statistics of generated fading gains may

follow a Rician distribution if a direct line-of-sight (LOS)
path is present, or a Rayleigh distribution in the absence of
a LOS path. The Nakagami-m distribution is a more general
distribution that can be utilized to model fading that is more
or less severe than Rayleigh fading [33]. It is important to
note that since the linear interpolator in (5) requires the
discrete difference between two subsequent low-frequency
fading samples (i.e., the current sample and the previous
sample) for each transmit-receive antenna pair, the fading
simulator in [15] also generates the discrete difference fading
signals, which can be passed to the linear interpolator for
generating the final channel gains.

Our design in [15] uses a time-multiplexed datapath to gen-
erate a relatively large number of fading processes on a single
FPGA (e.g., 1184 different paths on a Virtex-4 XC4VLX200-
11 Xilinx FPGA). These flat fading channels can be used to
model standard-compliant frequency-selective MIMO fading
channels. Wireless standards typically specify several different
power delay profiles (PDPs), such as Extended Pedestrian
A model (EPA), Extended Vehicular A model (EVA), and
Extended Typical Urban model (ETU) in the LTE standard
[34], to model various fading scenarios. In this article we focus
on applying spatial correlation properties of a MIMO fading
channel to the previously generated temporally-correlated fad-
ing samples in [15] using a new compact architecture.

To introduce spatial correlations between temporally-
correlated fading variates, instead of performing the matrix
calculations (2) and (4) on high-frequency samples, we sim-
ilarly perform the matrix operations on low-frequency fad-
ing samples and later up-sample the resulting streams with
appropriate interpolators. Using the fading channel simulator
generator in [15], the difference fading channel matrix D[m]
can be obtained as

D[m] =
[
dlp[m]

]
= H[m + 1] − H[m],

where the element dlp[m] in the l-th row and p-th column of
D[m] denotes the discrete difference fading signal h lp[m+1]−
hlp[m] generated by the temporally-correlated fading variate
generator in [15]. The difference samples are then passed to
the linear interpolators for up-sampling. Note that due to the
linearity of the basic matrix multiplication, we can verify that

UH[m + 1]V − UH[m]V = U(H[m + 1] − H[m])V
= UD[m]V. (6)

Similarly, since the Shur-Hadamard product is a linear opera-
tion, we can write

U(W � H[m + 1])V − U(W � H[m])V
= U

(
W � (H[m + 1] − H[m])

)
V (7)

= U
(
W � D[m]

)
V.

Equations (6) and (7) imply that instead of performing the
matrix operations (2) and (4) on the original fading samples,
we can use the difference samples and perform (6) and (7),
respectively.

For an efficient implementation of the spatial correlation
characteristics of analytical MIMO fading channels, we de-
signed a pipelined architecture. The architecture receives the



difference fading samples of matrix D from the MIMO fading
variate generator in [15], performs the matrix operations of
either equation (6) or equation (7) on the generated temporally-
correlated fading samples, and passes the spatio-temporally
correlated fading samples to the next stage for interpolation.
Fig. 2 shows the datapath of the implemented architecture
for performing the matrix operations. For convenience of
presentation, this architecture will be loosely referred to as the
“matrix processor” henceforth. The three RAMs uRAM, wRAM,
and vRAM are used to keep the elements of the U, W, and V
matrices, respectively. These memories are dual-port RAMs
that can be accessed and programmed externally through the
address bus xAddrBus and the data bus xDataBus for the real-
time configurablity. Moreover, the dual-port memory tRAM is
used as a register bank for holding the intermediate results.
The elements of U, W, and V matrices can be read using
the address bus uwvAddr and to access tRAM, the address lines
tAddrA and tAddrB are used. The module Y1 is implemented to
interface the matrix processor to the fading generator module
from [15]. The complex-valued fading samples are presented
in 32-bit format, 16 bits of which are used to present the in-
phase part and the remaining 16 bits are used for presenting
the quadrature part. Before being passed to the arithmetic
unit (AU), the input fading samples are converted into 36-
bit variables (18 bits for the in-phase part and 18 bits for the
quadrature part).
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Fig. 2. Datapath of the pipelined architecture for performing the matrix
operations of equations (6) and (7).

The control unit is implemented using a set of low-level
microinstructions for the elementary matrix operations, in-
cluding the matrix summation, the matrix product, and the
Shur-Hadamard matrix product. We developed specific subrou-
tines of microinstructions to perform these matrix operations
efficiently by exploiting the pipelining capabilities of the
AU datapath. Moreover, the developed subroutines can be
parameterized to perform the matrix operations for different
matrix dimensions. The control unit can be reprogrammed to
perform these matrix operations in any order.

The core of this architecture is the AU datapath, as shown
in Fig. 3, which performs basic complex arithmetic operations,

such as complex products (ai + jaq)× (bi + jbq) and complex
additions (ai + jaq) + (bi + jbq) for the two complex inputs
ai + jaq and bi + jbq, and also real by complex products
ai × (bi + jbq) [35]. The datapath of the AU contains two
18-bit multipliers U2 and U3 that operate on the quadrature
parts. The 36-bit output of the multiplier U2 (U3) is rounded
to the nearest 18-bit value by the modules U4, U5, and U8 (U6,
U7, and U9). The rounding operation is necessary to reduce
the quantization noise and to stabilize the linear interpolators.
This will be explained more in the next section.
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Fig. 3. Datapath of the pipelined arithmetic unit for performing the basic
complex operations.

When the addition operation is selected, the in-phase parts
of the complex inputs (i.e., ai and bi) are routed to the
adder/subtractor U14 either through the multiplexer U10, or
through the multiplexers U0 and U11. Also, the quadrature parts
of the complex inputs (i.e., aq and bq) are routed to the adder
U13 through the multiplexers U0 and U1. The output samples
ri = ai + bi and rq = aq + bq are then sent to the output via
multiplexers U16 and U17. For the real by complex product,
the real input ai is passed to the multipliers U2 and U3 where
it is multiplied by the bi and bq, respectively. After rounding,
the results ri = ai × bi and rq = ai × bq are passed to the
output through multiplexers U16 and U17. Note that the above
operations are pipelined and when the pipeline is full, the AU
can perform one operation per clock cycle for real by complex
products and for complex additions.

In contrast to the above complex operations that can be
performed in a single clock cycle, the complex product needs
two clock cycles (considering a full pipeline). In the first
cycle, the inputs ai and bq are passed to the multiplier U2

and the inputs aq and bi are routed to the multiplier U3. After
rounding, the results of these two products are passed to the
adder/subtractor U14 where the quadrature part of the result
(i.e., ai × bq + aq × bi) is calculated and stored in the register
U12. In the next cycle, the inputs ai and bi are passed to
the multiplier U2 and the inputs aq and bq are passed to the
multiplier U3. The calculated products are then rounded and
passed to the adder/subtractor U14 and the in-phase part of
the result (i.e., ai × bi − aq × bq) is calculated. Moreover, the
in-phase and the quadrature parts of the result are passed to
the output through the multiplexers U16, U15, and U17.

To perform the matrix operations needed for the Kronecker
channel model, the matrix processor starts with calculating



T1 = UD, where the elements of U are read from uRAM,
the complex elements of the input matrix D are read form
Y1 through the multiplexer Y2 and are passed to the AU, and
the elements of the temporary matrix T1 are written to tRAM.
To increase the system throughput and efficient use of the
pipelined datapath, the control unit of the matrix processor
performs the matrix multiplication UD in nR steps (assuming
that U is nR ×nR and D is nR ×nT ). More specifically, T1

is calculated as follows:

⎛
⎜⎜⎜⎝

u11 u12 · · · u1nR

u21 u22 · · · u2nR

...
...

. . .
...

unR1 unR2 · · · unRnR

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

d11 d12 · · · d1nT

d21 d22 · · · d2nT

...
...

. . .
...

dnR1 dnR2 · · · dnRnT

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

u11d11 u11d12 · · · u11d1nT

u21d11 u21d12 · · · u21d1nT

...
...

. . .
...

unR1d11 uN1d12 · · · unR1d1nT

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

u12d21 u12d22 · · · u12d2nT

u22d21 u22d22 · · · u22d2nT

...
...

. . .
...

unR2d21 unR2d22 · · · unR2d2nT

⎞
⎟⎟⎟⎠ +

. . .

⎛
⎜⎜⎜⎝

u1nRdnR1 u1nRdnR2 · · · u1nRdnRnT

u2nRdnR1 u2nRdnR2 · · · u2nRdnRnT

...
...

. . .
...

unRnRdnR1 unRnRdnR2 · · · unRdnRnT

⎞
⎟⎟⎟⎠ .

In the first step, the first column of U is multiplied by the
first row of D and the results are stored in the temporary
memory tRAM. In the second step, the second column of U is
multiplied by the second row of D and so on, until the nR-th
column of U is multiplied by the nR-th row of D. Then the
matrix processor accumulates the nR sub-product matrices to
generate the multiplication result. The reason for this out-of-
order processing for complex matrix multiplication is that the
AU has different latencies for complex addition and complex
multiplication operations. By re-arranging the multiplication
and addition operations, unnecessary bubbles in the pipeline
can be avoided.

The calculated temporary matrix T1 = UD is used to
generate the difference samples E = T1V, where the elements
of T1 are read from tRAM, the elements of V are read
from vRAM, and the elements of the output matrix E are
written to buffer Y3 to be passed to the interpolators. This
matrix multiplication is performed similar to the previous
matrix multiplication. This operation is first broken into nT

multiplication operations between the columns of T1 and the
rows of the matrix V. Then the nT sub-product matrices are
accumulated to generate the output matrix E.

Simulating the Weichselberger model and the VCR model
requires an additional Schur-Hadamard (or elemet-wise) prod-
uct. More specifically, the matrix processor first calculates
T2 = W � D as⎛

⎜⎜⎜⎝
w11 w12 · · · w1nT

w21 w22 · · · w2nT

...
...

. . .
...

wnR1 wnR2 · · · wnRnT

⎞
⎟⎟⎟⎠ �

⎛
⎜⎜⎜⎝

d11 d12 · · · d1nT

d21 d22 · · · d2nT

...
...

. . .
...

dnR1 dnR2 · · · dnRnT

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

w11d12 w12d12 · · · w1nT d1nT

w21d21 w22d22 · · · w2nT d2nT

...
...

. . .
...

wnR1dnR1 wnR2dnR2 · · · wnRnT d1nT

⎞
⎟⎟⎟⎠ .

Note that the elements of the matrix W are real valued
and therefore the AU can calculate each of the real by
complex products in a single clock cycle (when the pipeline
is full). After calculating T2, the matrix processor proceeds
with calculating T3 = UT2 and E = T3V. These matrix
multiplications are also performed with the same matrix
multiplication subroutine that breaks the calculations into nR

(or nT ) stages for effective use of the pipelined datapath.

IV. INTERPOLATOR DESIGN AND HARDWARE

IMPLEMENTATION

To simplify the hardware implementation of the interpolator
we constrain the interpolation factor I to be a power of
2, i.e., I = Fs/F̂s = 2k. In this case, the interpolator
(5) can be implemented without multiplications or divisions.
The interpolated fading samples h̃lp[n], n ≥ 0, at the times
n = 2km + i, m ≥ 0, i = 0, · · · , 2k − 1, can be written as

h̃lp[2km + i] = hlp[0] + 2−kdlp[m]i +
m−1∑
ḿ=0

dlp[ḿ], (8)

where

dlp[ḿ] =

{
hlp[2k(ḿ + 1)] − hlp[2kḿ] for ḿ ≥ 0;

0 otherwise,
(9)

denotes the difference between subsequent fading samples at
the slower sample rate F̂s = 2−kFs. Note that the expression
2−kdlp[m]i in (8) can be calculated using shifting and running-
sum operations and therefore, the linear interpolator can be
conveniently implemented using an accumulator and a shifter.

This interpolator can be used effectively for interpolating
samples generated by the fading simulator in [15] because the
difference signal has no DC components. In other words, the
impulse response of the difference block, hd[n] = δ[n]−δ[n−
1] (see equation (9)), in frequency domain is Hd(ej2πf ) =
1 − e−j2πf , which has no output at zero frequency (i.e.,
Hd(ej2π0) = 0). On the other hand, the quantization noise
added by the matrix processor is not necessarily DC-free.



This is due to the fact that the number of bits generated by
a multiplier is the sum of the number of bits of the input
operands. However, implementing a significantly wider datap-
ath for the multiplication results was mainly avoided to reduce
the hardware complexity. Instead some of the output bits
were trimmed. This, however, can increase the quantization
noise that can affect the accuracy of the implemented fading
simulator. The rounding technique used in the matrix processor
has a significant impact on the DC component of the added
quantization noise.

It is important to note that the linear interpolator in equation
(8) is implemented with a running summation, which resem-
bles a lowpass infinite impulse response (IIR) filter with the
frequency response Hi(ej2πf ) = 1/(1 − e−j2πf ). This IIR
filter accumulates the input samples (extremely large gain at
zero frequency) and therefore any DC component in the input
will add up over time. In contrast to generating temporally-
correlated fading variates, which only require superposition
of zero-mean sinusoids [15], simulating the spatial correla-
tion characteristics of MIMO fading channel models requires
multiple fixed-point multiplication and addition operations.

An effective method, which is used in the matrix processor,
is rounding the multiplication results to the nearest fixed-point
samples. Rounding the multiplication results can significantly
reduce the DC component of the quantization noise, since
the multiplication results are rounded up “hopefully” as many
times as they are rounded down. As an example, Fig. 4 shows a
drift, which is due to the accumulated quantization noise in the
interpolated fixed-point samples compared to the floating-point
results, for a Weichselberger channel model. Fig. 4 also shows
the improvement in reducing the drift and the effectiveness
of the rounding technique. As this figure shows, no clear DC
bias (or drift) can be observed after two million samples when
rounding the multiplier outputs.
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Fig. 4. The effect of rounding on the interpolator output.

We added the rounding functionality to the matrix processor
and simulated different analytical channel models and chan-
nel conditions. The fixed-point bit-true model was verified
based on the computer simulation and we proceeded with
the implementation of the fading channel simulator on a
GVA-290 FPGA prototyping platform [36]. The fading sim-
ulator was set to generate 50 million samples per second.
The generated fading samples seemed to have the required
statistical properties. However, the mean and variance of the

generated fading samples started to deviate from theoretical
results after a few minutes. The direction of deviation for
quadrature components of fading samples were related to
the simulated scenario and specific values of the U, W,
and V matrices. In one case, a 12% change in the signal
variance occurred after five minutes of sample generation, i.e.,
5 × 60 × 50 × 106 = 1.5 × 1010 generated fading samples.
This deviation happened very slowly in time and could not be
easily predicted with the software-based simulations due to the
relatively slow computer simulation speed. It was found that
the deviation is caused by accumulation of the DC component
of quantization noise in the interpolators. More specifically,
the assumption that samples are rounded up as many times as
they are rounded down on average was not accurate. Even the
slightest DC components in the quantization noise accumulate
in the interpolator and can render it unstable over long periods
of time.

To solve this problem, we modified the interpolator to
remove the DC component from the output. The original
interpolator is a simple accumulator performing a running sum
operation. Fig. 5 shows the datapath of the new interpolator,
where the fixed-point format of the signals is denoted using the
notation (WL,WF), where WL and WF denote the wordlength
and the fraction length of the variables, respectively. Only the
in-phase branch is shown in this figure. The main modification
in the new interpolator is the addition of negative feedback to
the accumulator N2 (or integrator). In this feedback loop, the
sign of the accumulator output (from the most significant bit)
is fed back and subtracted from half of the least significant
bit of the input. More specifically, 12-bits have been used to
represent the fraction part of the difference input d[n]. The
magnitude of the feedback signal is limited to half of the least
significant bit of the input. The accumulator output is later
divided by the interpolation factor I in the barrel shifter N3.
This would further reduce the relative amount of feedback to
the output signal.
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Fig. 5. Datapath of the new interpolator with DC cancelation.

Fig. 6 shows the frequency response of the modified linear
interpolator. In this figure, the interpolation factor is set to
I = 16. As this figure shows, the addition of the negative
feedback adds a sharp notch at the DC frequency. Particularly,
the DC frequency has been attenuated more than 60 dB while
the frequency response goes back to 0 dB at 1.5 × 10−5 Hz.
The other effect of the added feedback is reduced attenuation
at 0.5 radians per sample. However, the attenuation is still
sufficient to reduce the unwanted frequency components.
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V. APPLICATION OF SPATIO-TEMPORALLY FADING

CHANNELS IN A BER MEASUREMENT SYSTEM

The analytical MIMO fading channel simulator (including
the fading variate generator, matrix processor, and the interpo-
lator) is implemented on different FPGAs. The implemented
MIMO fading channel simulator can simulate i.i.d., Kronecker,
Weichselberger, and VCR analytical channel models. When
implemented on a Xilinx Virtex-5 XCVLX110-3 FPGA, the
2× 2 matrix processor occupies 2016 (2.9%) of configurable
slices, and two DSP48E (3.1%), and can operate at up to 234
MHz. The 4× 4 matrix processor occupies only 1212 (1.8%)
configurable slices, two DSP48E (3.1%), and four 36-Kbit
block memories (3.1%) and can operate at the same 234 MHz.
The sub-interpolator in Fig. 5 utilizes only 96 (0.1%) of the
configurable slices and can operate at up to 448 MHz when
implemented on the same FPGA. Notice that the maximum
speed of the sub-interpolator corresponds to the maximum
sample generation rate of the fading simulator.

For testing and validation of the designed and implemented
simulator, we utilized the hardware-based analytical MIMO
fading channel in a developed BER performance measurement
system [6], [7], [18], [35]. Fig. 7 shows the block diagram of
this BERT, which supports single-input single-output (SISO)
and 2 × 2 MIMO systems. In the implemented BERT, source
bits are encoded using an extended binary (24, 12) Golay
channel code [37], interleaved with a length 16383 pseudo-
random interleaver [38], and modulated using 4-QAM sym-
bols. Then they are passed through the MIMO channel, where
they are affected by correlated MIMO fading variates and
corrupted with additive white Gaussian noise (AWGN). The
fading simulator can be configured to simulate both single-
and multiple-antenna systems. In the receiver, a maximum
likelihood (ML) detector tries to estimate the transmitted bits.
After ML detection, the bit stream is de-interleaved, decoded,
and compared to the transmitted bit stream. We also developed
a graphical user interface (GUI) through which the BERT can
be easily configured for different test scenarios. For example,
we can set the spatial correlation parameters of the analytical
MIMO fading channel models, vary the signal-to-noise ratio
(SNR), and change the noise variance.
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Fig. 7. Block diagram of the implemented BERT system.

Fig. 8. BER measurement system using implemented MIMO fading channel
simulator on a single FPGA.

We implemented a 2× 2 MIMO communication system on
a GVA-290 FPGA development platform [36]. Fig. 8 shows
the picture of the GVA-290 board along with the power
source, oscilloscope, and the control computer. The GVA-
290 board is interfaced with the control computer through the
parallel port. This board hosts two Xilinx VirtexE XCV2000E
FPGAs in addition to four 100 Msps digital-to-analog and
four 100 Msps analog-to-digital converters. Since the VirtexE
FPGAs are relatively small with no embedded multipliers, we
tried to optimize the size of our communication system with
the minimum number of multipliers.

To estimate the BER performance of a communication
system with the Monte Carlo (MC) simulation method, we
have to measure the BER over a large number of independent
problem instances [39]. While simulation of AWGN channels
is straightforward as the system performance is averaged
over a large number of independent instances of noise and
data, BER performance measurement of digital communi-
cation systems over time-varying fading channels requires
significantly longer simulation times due to the dependence
between the channel instances. To accurately estimate the BER
performance of a communication system over a time-varying
fading channel, the error performance needs to be averaged
not only on independent instances of noise and data, but also
on the fading channel samples over a long period of time
(compared to the channel coherence time T c ≈ 0.423/fD

[19]). Fig. 9 shows the BER performance of this 2×2 MIMO
system for different channel models and also for the floating-



point computer simulation using the i.i.d. channel model. In
this platform, the sample rate is set to 3.125 million samples
per second or 12.5 Mbps (the maximum speed supported by
the ML detector), and the Doppler frequency is fD = 350 Hz.
For the Kronecker channel model, the U and V matrices are
set to

UK =
(−0.2281− j0.6045 0.0659 + j0.6270
−0.8782 + j0.6279 0.1516− j0.0198

)
,

VK =
(

0.1914− j0.3442 −0.1091− j0.0796
0.1021 + j1.2781 0.4248 + j0.0667

)
.

Also, for the Weichselberger channel model, the values

UW =
(

0.0713− j0.3103 0.2119− j0.9238
−0.9478 0.3184

)
,

WW =
(

0.3176 0.6355
0.9077 1.6340

)
,

VW =
(

0.8012 + j0.5202 −0.2468− j0.1602
0.2941 0.9556

)
,

are used in the simulator. Moreover, for the VCR channel
models we set these matrices to

UV =
(

0.7679 + j0.0821 −0.6316− j0.0676
0.6352 0.7723

)
,

WV =
(

1.6356 0.4370
1.0452 0.2035

)
,

VV =
(

0.2519 + j0.7142 0.6530
−0.2172− j0.6158 0.7573

)
.
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Fig. 9. Bit error rate performance of a 2 × 2 MIMO system with 4-QAM
modulated symbols and a ML detector measured using the FPGA-based fading
channel simulator for different channel models.

To estimate each BER point at each SNR, we measured the
performance over at least 1023 seconds of signal transmission
on the hardware platform, and when at least 100 errors were
collected from the detector output. Note that due to the
extremely slow software-based simulation of MIMO commu-
nication systems over time-varying fading channel models, the
computer simulation results were given up at 20 dB SNR.
This is due to the great computational complexity of the
bit-true BER performance measurement using realistic fading

channel models. In fact, 10 seconds of BER measurements
using our hardware platform take more than three days of a
bit-true software simulation in C running on a 3.6-GHz dual-
core Pentium processor with 1 GB of RAM. This corresponds
to a speed-up of over 25, 000. As this figure shows, the
hardware generated BER performance simulation results fol-
low the computer generated floating-point simulation results,
which verifies the accuracy of our hardware fading simulation
platform. Note that the floating-point BER simulation results
for three of the analytical fading channels are not shown as
they overlap and are indistinguishable from the fixed-point
BER simulation results.

The implemented fading simulation platform and the BER
performance measurement cores along with the analog and
digital access to different parts of the system on a GVA-
290 board can be used for testing and validation of more
complex wireless communication systems. More specifically,
with one VirtexE-2000 FPGA dedicated to fading simulation
and interfacing, the other on-board FPGAs can be used for
rapid prototyping of wireless communication systems. In addi-
tion, the implemented fading simulation and BER performance
measurement platform can be adapted to faster and more
recent FPGA boards for rapid prototyping of wireless com-
munication system in baseband and intermediate frequency.

VI. CONCLUSIONS

Hardware prototyping of the physical layer is becoming
an indispensable technique in the design and validation of
rapidly-evolving modern wireless communication systems.
This article presented the design and implementation of a com-
pact and accurate spatio-temporally correlated fading variate
generator for multiple-input multiple-output (MIMO) channels
on a single low-cost field-programmable gate array (FPGA).
The presented baseband simulator is versatile and can be
configured to simulate different channel models, including the
independent and identically distributed model, the Kronecker
model, the Weichselberger model, and the virtual channel
representation model. The MIMO fading channel simulator
was successfully used for the real-time bit error rate (BER)
performance validation of a 2 × 2 MIMO wireless system on
the same FPGA. The BER performance measurement of a
typical 2×2 MIMO system was accelerated by four orders of
magnitude compared to bit-true software-based simulations.
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