
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS 1

FPGA Implementation of Isotropic and Nonisotropic
Fading Channels

Amirhossein Alimohammad and Saeed Fouladi Fard

Abstract—A realistic fading channel simulator (FCS) is a key
component for the development and faithful performance evalu-
ation of wireless communication systems. This brief presents an
efficient implementation of an FCS on a single field-programmable
gate array. The FCS utilizes a configurable filter processor along
with a multistage interpolator for a compact implementation. The
FCS can be parameterized to accurately reproduce the statistical
properties of both isotropic and nonisotropic scattering scenarios.

Index Terms—Fading channel simulation, field-programmable
gate array (FPGA), isotropic scattering, nonisotropic scattering.

I. INTRODUCTION

W IRELESS communication systems must be designed
to operate over radio channels in a wide variety of

environments. To evaluate the performance of wireless commu-
nication systems, a fading channel simulator (FCS) can be used
to replicate the behavior of different propagation environments
and mobility conditions in a laboratory setting. It is generally
easier and thus more common to design an FCS in software
rather than in hardware. However, accurate simulation of radio
channels is a computationally intensive process and, indeed,
software simulation has become a serious bottleneck to timely
design and verification. Hardware-based simulators have shown
several orders of magnitude of speed-up over software-based
simulators [1].

To simulate a fading channel, we need to generate a suitable
sequence of fading gains. In an isotropic scattering fading
channel with an omnidirectional antenna at the receiver, the
incident directions of the received multipath signals, or angle
of arrival (AoA), are equally distributed, and the fading (path)
gains are modeled using a unit-variance zero-mean complex
Gaussian process c(t) = ci(t) + jcq(t) [2]. The real and imag-
inary parts of c(t) are independent Gaussian processes with
zero mean and equal variance [3]. Thus, the envelope |c(t)| =√
ci(t)2 + cq(t)2 follows the Rayleigh distribution, and in the

presence of a line-of-sight path, the amplitude statistics may
follow the Rician distribution [4].

Fading samples are generally correlated, and to generate
the in-phase and quadrature components of a fading process

Manuscript received December 27, 2012; revised May 21, 2013; accepted
August 21, 2013. This brief was recommended by Associate Editor Y. Miyanaga.

A. Alimohammad is with the Department of Electrical and Computer
Engineering, San Diego State University, San Diego, CA 92182 USA (e-mail:
aalimohammad@mail.sdsu.edu).

S. F. Fard is with PMC-Sierra, Calgary, AB T2L 2K7, Canada.
Color versions of one or more of the figures in this brief are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TCSII.2013.2281768

c(t) with a particular temporal correlation between variates, a
complex Gaussian random process n(t) = ni(t) + jnq(t) with
zero-mean, unit-variance, and uncorrelated samples is passed
through a filter [5] with an appropriate frequency response
H(f). A linear filtering operation on the complex Gaussian
samples with flat power spectral density (PSD) yields samples
that also have a Gaussian distribution, with output spectrum
Sy(f) = |H(f)|2, where |H(f)|2 is the squared magnitude re-
sponse of the filter and Sy(f) is the PSD of the output samples.
This filter is often called the spectrum shaping filter (SSF) for
it determines the power spectrum shape. Therefore, to generate
temporally correlated fading samples, a stream of independent
Gaussian samples is passed through an SSF with the magnitude
response equal to the square root of the magnitude of the PSD
of the desired fading process (i.e., |H(f)| = |Sc(f)|1/2).

Assuming an isotropic scattering fading channel, the PSD
associated with either the in-phase or quadrature component of
a complex fading signal has the well-known Jakes’ U-shaped
form Sci(f) = Scq (f) = (2π

√
f2
D − f2)−1 that is bandlimited

to ±fD, where fD is the maximum Doppler frequency [2].
Therefore, to generate a Rayleigh fading process, uncorrelated
samples of a zero-mean complex Gaussian process pass through
an SSF with a magnitude response equal to the square root of
the magnitude of Sc(f). The autocorrelation function (ACF)
associated with either ci(t) or cq(t) is Rci,ci(τ) = Rcq,cq (τ) =
J0(2πfDτ), where J0(·) is the zeroth-order Bessel function of
the first kind [2]. For nonisotropic scattering scenarios, in which
AoA is not uniformly distributed or when the antennas are not
omnidirectional, the PSD of the fading process is asymmetric.

In this brief, we present a compact hardware implementation
of the FCS on a single field-programmable gate array (FPGA).
The FCS utilizes a configurable filter processor and a multistage
structure with elastic buffers for interconnecting the elements
of the FCS architecture. The FCS can be parameterized to
accurately generate fading gains for both isotropic and non-
isotropic scattering scenarios. The rest of this brief is organized
as follows. Section II briefly explains important SSF design
considerations. Section III presents FPGA implementation of
isotropic and nonisotropic fading channels. Section IV sum-
marizes the implementation and simulation results. Finally,
Section V makes some concluding remarks.

II. SSF DESIGN CONSIDERATIONS

For a typical wireless communication scenario, the Doppler
frequency fD is significantly smaller than the signal sample
rate Fs. Thus, SSF would have an extremely narrow bandwidth
and a very sharp cutoff. We can reduce the complexity of SSF

1549-7747 © 2013 IEEE

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

by designing it at a much lower sampling frequency F1 �
Fs, thereby increasing the computational efficiency and also
improving the stability and the accuracy of the designed SSF
[6]. The resulting low-rate signal can then be interpolated to
reach the target sampling frequency Fs = F1 × I . Interpolation
of samples generated by the SSF at a low sampling frequency
can be performed by inserting I − 1 zeros between each pair
of successive samples of filtered Gaussian variates (i.e., fading
variates) and then passing the resulting stream through a low-
pass filter with cutoff frequency π/I (in radians per second).
Note that, for a practical mobile system, the factor I can
be relatively large and, thus, the complexity of the real-time
interpolation filter can be significant. To reduce the compu-
tational complexity of the low-pass filter, interpolation is ac-
complished using a multistage interpolator design, where Fs =
F1 ×

∏T
j=0 Ij , T + 1 is the number of interpolation stages and

Ij is the integer upsampling factor at the jth stage.
An important point is that, if the stopband attenuation of

the shaping filter is not sufficiently large, then the out-of-band
noise that passes through the filter will degrade the accuracy
of the statistics of the generated fading variates. Nevertheless,
designing a narrow-band filter with a sharp cutoff and a large
attenuation inevitably leads to a high-order filter, which di-
rectly impacts the hardware complexity of the FCS. Therefore,
to obtain the closest approximation to the desired frequency
response with a relatively small filter order, the SSF and the
first interpolation stage are suggested to be designed “together”
[7]. In this approach, the shaping filter is designed to accurately
approximate the desired PSD in the passband region; however,
it might not provide enough attenuation in the out-of-band
region. The first-stage interpolation filter is then designed not
only to eliminate the image signals caused by upsampling but
also to provide additional attenuation in the out-of-band region
and over the transition region to ensure a sharp cutoff. This
approach minimizes the approximation error in the passband
|f | < fD while maximizing the attenuation in the stopband and,
hence, it results in a much more accurate statistical properties
of the generated fading samples.

Given the desired PSD Sc(f) = (πfD
√

1− (f/fD)2)−1 of
an isotropic fading channel, the low-pass SSF has a symmetric
frequency response and, hence, its poles and zeros appear in
complex conjugate pairs; therefore, this filter can be realized
using cascaded filter structures. The magnitude response of the
SSF can be efficiently approximated with an infinite-duration
impulse response (IIR) filter of order Γ as

H(ejw)

Γ/2∏
k=1

{
gk × 1 + bk1e

−jω + bk2e
−j2ω

1 + ak1e
−jω + ak2e

−j2ω

}
(1)

which is equivalent to the magnitude response of Γ/2 cascaded
canonic second-order sections (SOSs) [7]. In (1), bk1 , bk2 , ak1 ,
and ak2 denote the coefficients, and gk denotes the real-valued
scaling factor of the kth SOS. Since the filter input has a
Gaussian distribution, scaling factor gk is used in each stage to
maintain the signal magnitude within the representable range.
The SSF filter coefficients and scaling factors can be obtained
using the MATLAB filter design fdatool standard tool and
iirlpnorm function [8]. Since only the amplitude response af-

Fig. 1. Block diagram of the FCS.

fects the correlation properties and no restrictions are imposed
on the phase response, we also use an elliptic IIR low-pass filter
(EILPF) in the first interpolation stage.

After the SSF output is upsampled I0 times and passed to
the EILPF generating F2 = I0 × F1 samples per second, the
samples need to be oversampled and passed through low-pass
filters to obtain the target output sample rate Fs. We note
that utilizing conventional FIR or IIR filters at this stage is
overly expensive in hardware since the filtering operations are
performed at higher sample rates. When the maximum Doppler
frequency is much smaller than the sampling frequency, we
propose to use a cascade of zero-order hold filters with im-
pulse response dIj (n) = [I−1

j , I−1
j , . . . , I−1

j]1×Ij , where Ij is
the oversampling rate [9]. Such fading-specific interpolation
low-pass filters (SILPFs) can be easily implemented without
multiplication. Fig. 1 shows the structure of the designed FCS.

For isotropic scattering, the PSD of fading samples is sym-
metric and, hence, poles and zeros of (1) appear in complex
conjugate pairs. Therefore, the SSF has real-valued coeffi-
cients and can be implemented using Γ/2 SOSs. In contrast
to isotropic fading, the PSD of fading samples in nonisotropic
scattering is not symmetric in general, and hence, the SSF
coefficients are potentially complex [10]. We will refer to filters
with real coefficients as “real filters” and filters with complex
coefficients as “complex filters.” When the filter coefficients
are complex, the poles and zeros of the filter do not appear in
complex conjugate pairs. In [7], we used the MATLAB filter
design fdatool standard tool and iirlpnorm function to obtain the
real-valued IIR filter coefficients for isotropic fading channels.
However, this approach is not appropriate in designing the com-
plex filters required for shaping the spectrum of nonisotropic
channels.

In [11] and [12], we proposed a novel ellipsoid iterative
optimization algorithm for designing stable complex IIR filters
with quantized coefficients. Note that the precision of the fixed-
point filter coefficients plays an important role in the stability
and accuracy of IIR filters. To make sure that the filters are
stable under quantization effects and to reduce quantization
noise, the algorithm utilizes a least-squares cost function aug-
mented with a parameterizable barrier function to control the
location of the poles at any desired safe distance from the
unit circle. Moreover, techniques such as pole-zero ordering
and augmenting auxiliary poles and zeros were applied in
minimizing the wordlength of the variables and the quantization
effects. It was shown in [11] and [12] that, for nonisotropic
fading channels, the SSF with a prescribed amplitude response
|H(ejω)| can be designed as a product of first-order sections
(FOSs) as

H(ejω) =

Γ∏
k=1

gk × 1− bk1e
−jω

1− ak1e
−jω

(2)

where gk is the positive scaling factor, Γ is the filter order, and
bk1 and ak1 are the kth complex zero and pole, respectively.

ALIMOHAMMAD AND FARD: FPGA IMPLEMENTATION OF ISOTROPIC AND NONISOTROPIC FADING CHANNELS 3

Fig. 2. Block diagram of the multipath FCS.

III. ARCHITECTURE OF THE CHANNEL SIMULATOR

Fig. 2 shows the block diagram of the designed multipath
FCS. It can generate L independent fading processes (paths)
with different correlation properties. The fading processes can
be used to model, for example, frequency-selective channels or
fading channels in multiple-input–multiple-output systems. For
an efficient hardware implementation of the FCS, we note that
the shaping and first-stage interpolation low-pass filters operate
at relatively low sampling rates and, hence, it is advantageous to
reuse hardware to implement both filters. In the proposed FCS
architecture, the Gaussian samples generated by the Gaussian
noise generator (GNG) are passed to the “filter processor,”
which runs the operations of the designed SSFs for L indepen-
dent paths (or threads). Each thread of data is then upsampled
I0 times and passed through an EILPF implemented using the
same filter processor. After the EILPF, the data streams are
passed to L independent series of T configurable SILPFs.

To generate each Gaussian variate, we simply added 12 uni-
formly distributed random variables ui ∈ [−0.5, 0.5). Since the
fading samples are strongly correlated, generating the uniform
samples with a simple linear feedback shift register structure
does not change the correlation properties significantly. Also,
from the central limit theorem, filtering the input process with
the SSF and EILPF will help in improving the Gaussian dis-
tribution of the fading samples. For a greater accuracy, we can
always utilize a high-quality GNG from [13].

For simulating isotropic fading channels, the SSF and EILPF
can be implemented efficiently using cascaded SOSs. These
filters are implemented using cascaded FOSs for simulating
nonisotropic scenarios. The operations of the cascaded FOS and
SOS are performed using the filter processor datapath shown in
Fig. 3. The main element of this architecture is a multiplier–
accumulator unit that multiplies the in-phase and quadrature
signal components by real-valued coefficients when the channel
is isotropic and by complex-valued coefficients when the chan-
nel is nonisotropic. To make our design more resilient against
overflows and the resulting instability, the adder saturates its
output in case of overflow. Note that the filtering operations of
a real filter with cascaded SOSs require the same number of
multiplications and additions as a complex filter with cascaded
FOSs.

For isotropic scattering fading channels, the coefficients of
the SOSs are stored in RAMa1,2 and RAMb1,2, and the scaling
factors are stored in RAMg. When implementing nonisotropic
fading channels, the coefficients of FOSs are stored in RAMai,q
and RAMbi,q . RAMm1,2/m1i,q and RAMm3,4/m2i,q store the
real-valued contents of the four memories in every SOS or

Fig. 3. Datapath of the filter processor.

Fig. 4. Datapath of the proposed SILPF.

the complex-valued contents of the two memories in every
FOS. When simulating Rician fading channels, a bias can be
added to the output value from RAMr/ri,q . The input Gaussian
samples enter this datapath via the multiplexer, and the output
of each filter section is written into RAMd/di,q , which holds
the intermediate results. This datapath can also be used in
performing zero-padding for interpolation, when required.

The control sequence for running the cascaded filter sections
is straightforward. However, when emulating multiple paths,
where each path could have different filter specifications, flex-
ible implementation of the control unit becomes challenging.
To improve the robustness of the filter processor, two flags in�
and out�, where � = 1, . . . , L, are assigned to every thread of
cascaded filter sections (i.e., for each individual path). These
flags govern the data flow through each thread. For example, for
the �th thread (path), if in� is high, then the input data are ready
to be read, and if out� is high, then the data can be written to the
next stage. For each thread, the filter processor keeps executing
the filter sections unless either of the input or output flags are
deasserted. To prevent the overwriting of unprocessed data, the
filter sections in each thread are scheduled to be executed from
the last section to the first.

Fig. 4 shows the datapath of the parametric SILPF that
upsamples the input signal and uses a multiplication-free filter
for interpolation [9]. The interpolation factor Ij is passed to this
circuit as a parameter to specify the length of the shift register.
After interpolation, the signal amplitude can be multiplied by
2−λ (shifted to the right) to adjust the signal power, where λ is
another input parameter passed to this circuit.

To interconnect the elements of the FCS datapath shown in
Fig. 2 and also to interface the FCS with external (off-the-chip)
hardware, we utilize elastic buffers. The elastic buffer is ba-
sically a random access memory (RAM) with two (potentially)
asynchronous ports as shown in Fig. 5. The elastic buffer allows

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS

Fig. 5. Block diagram of the elastic buffer.

the input data to be written into the memory using an input
clock and then read out according to an output clock. Therefore,
consecutive blocks do not have to be strictly synchronized with
respect to an instantaneous data throughput. It is important
to note that, for correct operation of the elastic buffer, the
read cycle must occur after the write cycle and not before or
concurrently with the write cycle. The elastic buffer is designed
to operate in two modes: handShaking and continuous. In the
handShaking mode, the receiver block requests to read data
samples (req2read) prior to reading from the buffer. When the
buffer is empty, the receiver is informed by asserting buf˙empty
to stop requesting until new data arrive. Likewise, the transmit-
ter requests to write into the elastic buffer (req2write), and it
is informed by asserting buf˙full when the buffer is full. The
continuous mode is used in interfacing external clock domains
without handshaking capability. If the transmitter is clocked
slightly faster than the receiver, it may start to fill the elastic
buffer faster than the receiver can drain it. In that case, the
transmitter overwrites some of the memory locations when
the buffer is full, and therefore, some of the data words are
dropped. Conversely, if the receiver is running slightly faster
than the transmitter, the receiver may clock out more data than
have been transmitted. In this mode, as the buffer drains, the
elastic buffer inserts some data words by rereading the last
data word. The consequences of repeating read data depend
on the application. In practical wireless systems, the sample
rate Fs is much higher than the maximum Doppler frequency
fD and, therefore, immediate fading samples have almost equal
values. Now, we show that the elastic buffer in the continuous
mode does not have a significant effect on the statistics of the
generated fading samples. Let us define the difference signal
yk(t) to be the difference between x(t) and x(t− kTs) for
any time t = nTs = n/Fs. Here, yk(t) can be obtained by
passing x(t) through a filter with the impulse response bk(t) =
δ(t)− δ(t− kTs). From here, yk(t) is a zero-mean Gaussian
random process with variance

Ryy(0) =E {y(t)y(t)∗} =

+∞∫
−∞

Sc(f)
∣∣1− e−j2πfkTs

∣∣2 df

=Jo(0)− Jo(2πkfDTs) ≈ (kπfDTs)
2 (3)

where in (3) we used the expansion of the zeroth-order Bessel
function Jo(x) =

∑∞
m=0((−1)mx2m)/(22m(m!)2). Equation

(3) shows that, when Fs � fD, the power of the difference
signal goes to zero and, hence, the difference between x(t)
and x(t± Ts) becomes negligible. Under this condition, if
the signal x(t) is sampled out at F́s samples per second, we
can approximate the sampled signal x́(t) ≈ x(ηt), where η =

F́s/Fs. From here, the ACF of x́(t) is Rx́(τ) = Jo(2π(ηfD)τ).

TABLE I
IMPLEMENTATION RESULTS FOR DIFFERENT FILTER DESIGNS

Therefore, in the presence of elastic buffers, the clock mismatch
between the transmitter and the receiver has a similar effect
as a slight (probably negligible in most cases) change in the
maximum Doppler frequency.

IV. FPGA IMPLEMENTATION AND SIMULATION RESULTS

We propose to design the SSF at a sampling frequency F1,
where 4fD < F1 ≤ 8fD [12], and exploit power-of-2 interpo-
lation factors to further reduce the hardware complexity. The
generated samples from the SSF are upsampled I0 = 16 times
and passed through the EILPF. Then, the samples are passed
through T successive SILPFs, in which the ith SILPF interpo-
lates the signal 2ki times. The target output sampling rate is thus
Fs = F1 × 16×

∏T
i=1 2

ki . Table I shows the implementation
results of an order Γ = 6 elliptic low-pass filter with a sample
rate of 4800 Hz, pass frequency of 1200 Hz, stop frequency of
1500 Hz, passband ripple of 1 dB, and stopband attenuation of
50 dB on a Xilinx Virtex-II Pro FPGA. It can be seen that the
cascaded direct-form-II (DF-II) structure requires the largest
number of configurable slices and also runs the slowest. The
direct-form-I (DF-I) implementation of the same filter with the
pole-zero ordering (DF - I + ord.) reduces the required num-
ber of configurable slices significantly and also increases the
performance. Augmenting a zero at dc (DF - I + ord.+ aug.)
can further reduce the required number of configurable slices
while providing the highest performance. As this table shows,
due to the reduced wordlength, the hardware complexity has
been reduced by more than 55%, and the maximum operation
speed has been increased by more than 34%. The bit-true fixed-
point simulation results in [12] also showed that the cascaded
DF-I structure provides superior accuracy and reduced range of
variables compared to the other candidate structures. Therefore,
we designed and implemented the SSF and EILPF using the
cascaded DF-I structure.

Using our filter design approach presented in [11] and [12],
we designed a complex SSF for simulating a nonisotropic fad-
ing channel with normalized Doppler frequency of −0.15625,
directivity κ = 5, and AoA ψ̃ = π/5 using 12 cascaded FOSs.
We used 12 bits for representing the coefficients of the FOSs.
As Fig. 6(a) shows, the frequency response of the designed
fixed-point filter with stopband attenuation ε = 0.001 closely
matches the desired response. In another example, we designed
and implemented the SSF for an isotropic fading channel with a
Doppler frequency of 9 Hz and fD/F1 = 0.125, using ten cas-
caded FOSs. We used 16 bits for representing the coefficients
of the FOSs. Fig. 6(b) shows that the designed fixed-point filter
accurately produces the desired response within the passband
and provides more than 55-dB attenuation in the stopband. The
aforementioned results were generated using the fixed-point bit-
true model of the FCS. The hardware FCS is designed and

ALIMOHAMMAD AND FARD: FPGA IMPLEMENTATION OF ISOTROPIC AND NONISOTROPIC FADING CHANNELS 5

Fig. 6. Frequency response of the designed fixed-point SSFs and the desired
responses.

TABLE II
CHARACTERISTICS OF THE FILTER PROCESSORS

implemented to generate fixed-point results that are identical
to those produced by our bit-true software simulator.

Table II summarizes the implementation results of three filter
processors on a Xilinx Virtex-4 XC4VLX200-11 FPGA. All of
the designs are configured to process eight independent streams
of fading samples, and the filter order is set to 16. The design in
[14] was reconfigured to meet the aforementioned requirements
(eight instantiations of complex filters of order 16). For a fair
comparison, in all designs, the memories are implemented with
distributed RAMs (i.e., look-up table-based memories), and no
dedicated multipliers are used. Note that the design from [15]
processes filters with real coefficients and therefore requires
half the memory to store the coefficients and also preforms half
the arithmetic operations of its complex-valued counterpart.
However, the proposed filter architecture results in a more
compact and efficient design, as shown in Table II. Compared to
the design in [14], the new filter processor utilizes almost nine
times fewer configurable slices and can process 22.5 times more
samples per second. Fig. 7 shows the desired filter response and
the measured output power spectrum of an implemented SSF in
12-bit fixed-point format on a GVA-290 FPGA development
board [16], which verifies the correct operation of the FPGA-
based FCS.

V. CONCLUSION

This brief has presented a compact hardware implementation
of an FCS on a single FPGA. Fading samples are generated at a
low rate and are then interpolated to match the desired sample
rate. The simulator accurately and efficiently implements both
isotropic and nonisotropic scattering scenarios. The accuracy
and performance of the proposed FCS were verified with bit-

Fig. 7. Desired frequency response and measured power spectrum of the
filtered noise.

true fixed-point simulations of different fading channel scenar-
ios. The implemented FCS requires fewer hardware resources
while providing a greater fading sample generation rate com-
pared to the previously published designs. The proposed FCS
is well suited for use in an FPGA-based error rate performance
verification system.

REFERENCES

[1] A. Alimohammad, S. F. Fard, and B. F. Cockburn, “FPGA-based acceler-
ator for the verification of leading-edge wireless systems,” in Proc. IEEE
Intl. Design Autom. Conf., 2009, pp. 844–847.

[2] P. Bello, “Characterization of randomly time-variant linear channels,”
IEEE Trans. Commun., vol. COM-11, no. 4, pp. 360–393, Dec. 1963.

[3] R. N. Kolte, S. C. Kwatra, and G. H. Stevens, “Computer controlled
hardware simulation of fading channel models,” in Proc. IEEE Intl. Conf.
Commun., 1998, pp. 1646–1650.

[4] G. L. Stüber, Principles of Mobile Communication. Norwell, MA, USA:
Kluwer, 2001.

[5] J. I. Smith, “A computer generated multipath fading simulation for
mobile radio,” IEEE Trans. Veh. Technol., vol. VT-24, no. 3, pp. 39–40,
Aug. 1975.

[6] A. Alimohammad and B. F. Cockburn, “Modeling and hardware im-
plementation aspects of fading channel simulators,” IEEE Trans. Veh.
Technol., vol. 57, no. 4, pp. 2055–2069, Jul. 2008.

[7] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel, “A com-
pact single-FPGA fading channel simulator,” IEEE Trans. Circuits Syst.
II, vol. 55, no. 1, pp. 84–88, Jan. 2008.

[8] MATLAB Filter Design Toolbox, User’s Guide, The Mathworks, Natick,
MA, USA, 2005.

[9] T. Saramaki and J. Yli-Kaakinen, “A novel systematic approach for syn-
thesizing multiplication-free highly-selective FIR half-band decimators
and interpolators,” in Proc. IEEE Asia Pacific Conf. Circuits Syst., 2006,
pp. 920–923.

[10] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete Time Signal
Processing. Englewood Cliffs, NJ, USA: Prentice-Hall, 1999.

[11] A. Alimohammad, S. F. Fard, and B. F. Cockburn, “Accurate simulation
of nonisotropic fading channels with arbitrary temporal correlation,” IET
Commun., vol. 6, no. 5, pp. 557–564, Mar. 2012.

[12] A. Alimohammad, S. F. Fard, and B. F. Cockburn, “Filter-based fading
channel modeling,” Model. Simul. Mobile Radio Channels, vol. 2012,
pp. 705078-1–705078-10, 2012, Special Theme Issue of Modeling and
Simulation in Engineering.

[13] A. Alimohammad, S. F. Fard, B. F. Cockburn, and C. Schlegel, “A com-
pact and accurate Gaussian variate generator,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 16, no. 5, pp. 517–527, May 2008.

[14] S. F. Fard, A. Alimohammad, M. Khorasani, C. Schlegel, and
B. F. Cockburn, “A compact and accurate FPGA based nonisotropic
fading channel simulator,” in Proc. IEEE Proc. Canadian Conf. Elect.
Comput. Eng., 2007, pp. 1239–1242.

[15] S. F. Fard, A. Alimohammad, B. F. Cockburn, and C. Schlegel, “A sin-
gle FPGA filter-based multipath fading emulator,” in Proc. IEEE Proc.
GLOBECOM, 2009, pp. 1–5.

[16] GVA-290 Xilinx VirtexE Hardware Accelerator, GV Associates, Ramona,
CA, USA, Aug. 2009.

