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Abstract—This brief presents an improved layered space-time circularly-symmetric complex Gaussian random variabbarfr
symbol detection algorithm for multiple-input multiple-o utput CN(0,1) [1].
(MIMO) wireless systems. The proposed detection scheme lities The task of the MIMO detector is to estimate the symbol

a different layer ordering strategy than the so-called optimal f h ived si | . likeli
ordering used in the conventional Bell Laboratories Layerel VECtOrs from the received signal vectgr. Maximum likeli-

Space-Time (BLAST) algorithm. To calculate the nulling vetors hood (ML) detection provides optimal error rate perfornenc
and their associated ordering, instead of using direct numécal  for uncoded MIMO systems. At the receiver, assuming that the

techniques, we utilize a numerically-stable iterative saltion. Itis  channel matrixH is known (or estimated perfectly), an ML

shown that the performance of the proposed detector approdes detector computes an estimatefor each transmitted space-
closely that of an optimal maximum likelihood (ML) detector . .
time (ST) symbok using

at the expense of greater computational complexity compace
to BLAST. Utilizing our proposed parameterizable detector one R .
can trade off between the computational requirement and the S = arg min {HY - HSH} 2
error rate performance. e

Index Terms—MIMO detection, layered space-time decoding, Where the minimum is sought over all possibie-element
BLAST, generalized eigenvalue decomposition. ST symbolss € Q"T. Because an ML detector requires an
Notation: z* denotes the complex conjugate of |Q| exhaustive search over a typically large setrgf possible

denotes the cardinality of signal constellationE{-} denotes transmitted ST symbols i"", its computational complexity
the expectation operatof|.| denotes the Euclidean normdrows exponentially with the number of transmit antennas
I denotes the identity matrix(-)~* denotes the inverse ofand the signal constellation cardinalit@|. Simple linear

a matrix, (-)* denotes the denotes the conjugate transpddetection schemes use low complexity filtering, designed
(Hermitian) of a matrix. using the zero-forcing (ZF) criterion or the minimum mean-

square error (MMSE) criterion. While the ZF and MMSE
|. INTRODUCTION detection schemes are computationally-efficient, theietyor
In a spatial multiplexing MIMO system with transmit- rate performance is far from that of optimal ML detection. [2]
ting antennas anay receiving antennas, the high-rate data Numerous detection algorithms have been proposed over the
stream is demultiplexed inta parallel sub-streams and thdast decade with error rate performances and computational
transmitter sendsr independent symbols; simultaneously complexities residing between those of linear detectiod an
over a richly-scattered wireless channel , whgee 1, ..., nr, optimal ML detection. In this brief we propose a layered
chosen from a finite complex-valued signal constellatipn detection algorithm similar to conventional Bell Labornégs
Theng-dimensional vector of received signakan be written Layered Space-Time (BLAST) with the following merits: (i)

as follows: its error performance approaches closely that of a ML detect
nr (i) it uses a numerically-stable iterative solution ireie
y=Hs+n= Z h;s; + n, (1) of a direct but computationally-intensive solution; (iiis
j=1 complexity is not variable, which makes the detection pssce

wheres denotes their x 1 transmitted signal vector andlis  predictable (deterministic); and (iv) it can be paramesti
anng x 1 noise vector with independent identically distributedo readily trade off the computational requirement with the
(i.i.d.) circularly-symmetric complex Gaussian compatisenerror rate performance. These merits are obtained with a
with zero mean and unit variance, i.e., the components a@mputational complexity that is greater than that of the
from CN(0,1). Theng x np channel matrix is denoted by BLAST detection algorithm.

H = [hy,... h,,], wherehy, is the column vector of complex The rest of this brief is organized as follows. Section I
transfer gains from the:-th transmitter antenna to atkp  briefly reviews MIMO detection schemes. Section Il present
receiver antennas. For a flat-fading Rayleigh channel moaelr proposed detection scheme. An iterative solution lizet

with no line-of-sight, each elemerit;; in H (i.e., the gain for an efficient implementation of the proposed technique.
from transmitter antenng to receiver antennad) is an i.i.d. Section IV presents the simulation results. Section V prisse



a variation of the proposed detector with parameterizatie-c Algorithm 1 The MMSE V-BLAST algorithm.
plexity. Finally, Section VI makes some concluding remarks H = H;
for (i = 1;7 < nr;i++) do
Il. BRIEF OVERVIEW OF MIMO DETECTION SCHEMES G- (HH+ Z—Z‘ ) H

Simple linear detection schemes use low complexity fil- ;) = k = min|g;||%; {Ordering}
tering to eliminate the multiple-stream interference (MSI e = Gk ,).J
For example, ZF detection uses the Moore-Penrose pseudo ¢ _ g..
inverse G = (H*H) 'H* of the channel matrixd to end for »
reconstruct transmitted symbols &as= Gy — Gn. Since the  for (every received symbol vectr in a block)do
noise vector is weighted by the inverse singular valueBlof for (i = 1,4 <nr) do

when the channel matrix becomes ill-conditioned in certain ’f:_O(i)} (Nulling}

random-fading events, ZF can result in poor perfor_mance_ zz;%ké;); {S"Cmgg}

due to the noise enhancement. When the signal-to-noise rati if (i <nr) then

(SNR) o2 /02 is estimated at the receiver, the MMSE criterion y =y — hysy; {Cancelation}
2 p

G = (H'H + %1,,,)"'H" can be used instead to balance en%”%r'f

MSI mitigation with noise enhancement and thus minimize return s:
the total error. At low and mid-range SNR values, the MMSE end for
outperforms the ZF receiver while at high SNR values the
MMSE receiver converges to the ZF performance.

The non-linear vertical BLAST (V-BLAST) algorithm de-
tects each layer (symbol) separately by using an iteratiségorithms carry out the non-exhaustive search problem [4]
decision feedback approach, as shown in Algorithm 1. Sintdeey generally fall into two main categories, namely thetdep
all nr components ofs utilize the same constellatio®, first search and breadth-first search methods. Sphere decodi
the weakest layek, i.e., the layer with the smallest post(SD) is probably the most attractive depth-first approadh [5
detection SNRE{|sx|?}/(02]|gx|?), where s, denotes the [6]. The performance of SD closely approaches that of ML
transmitted signal from thé-th transmitter antenna ang}, with significantly reduced average complexity compared to
is the k-th row of G, will dominate the error performanceML detection. The SD algorithm reduces the number of
of the system. Thus it was recommended in [3] that thmandidate ST symbols to be considered in the tree-basethsear
detection algorithm start with the layer with the strongedty finding the set{s} of ST symbols closest to the received
post-detection SNR (i.e., corresponding to the rgwof G vector symboly for which Hs lies within a hypersphere with
with the minimum norm) and then proceed successively given radiusd,, i.e., ||y — Hs||? < d2. Usually,d, is adjusted
detect the symbol of the layer with the next weakest SNR. Agcording to the noise variance [6], [7]. Unfortunately gize
shown in Algorithm 1, after estimating and cancelifng hy  of the searched solution space, and hence its instantaneous
is zeroed and henc& must use a deflated versidfi; of H throughput, is variable and is directly related to the clenn
in the next iteration, wher@I; denotes the matrix obtainedconditions and also the operating SNR [8]. When the channel
by zeroing columnk of H. The notationO(i) denotes the is ill-conditioned (i.e., a channel whose condition numiser
layer k, wherek € {1,...,nr}, that is to be detected atmuch greater than one) [9], the computational complexity
stepi. Note that under the assumption of quasi-stationaof SD substantially increases and approaches that of ML
block-fading channels, the channel variation is neglgitwer detection (i.e., exponential imr) [5], [10]. However, for
a coherence period and it changes independently from anéficiently large SNR it behaves polynomially inr as
period to another. Therefore, nulling vectors need be cdetpulong asny is not too large [6]. In addition to the average
only once for every block of received symbols. For each layeomputational complexity (i.e., averaged over a sufficient
k, first an interference nulling step tries to reduce the arhoumumber of channel realizations) of SD, which approacheis tha
of interference towards;, by multiplying the received signal of ML detection [11], the variable complexity of SD makes
y by a nulling vectorg,.. Second, symbad;, is detected using this scheme inconvenient for practical implementationgnsh
the slicer functionQ(-), which returns the nearest symbol indata needs to be processed at a constant rate. To overcome the
the signal constellatio® to the estimated symbdj,. Finally, limitations of SD, the fixed-sphere decoding (FSD) searches
the predicted interference on ther — 1 other signals due over only a fixed number of lattice vectdkks, generated by a
to s can be subtracted from the received signal. V-BLAS3ubset of all constellation points around the receivedorect
proceeds iteratively through the above three steps uhtilal independent of the channel conditions and noise levelliyigl
transmitted symbols are recovered. a fixed complexity algorithm [12]. Moreover, FSD does not

Various non-exhaustive tree-based search detectors with suffer from the sequential nature of the SD and all the paths i
timal (or near-optimal) performance have been proposed. Tihe tree structure can be searched in parallel. Neverthdles
main idea is to prune the exhaustive search space and theredtayplexity of the FSD is high [13] and its performance falls
provide substantial computational saving over the ML brutshort of being optimum [14]. Similarly, thé& -Best breadth-
force searching method. Depending on how the tree traverfedt search algorithm [15] provides a deterministic consta




throughput which is independent of the channel realizatiavhere we use the Hermitian properties and the definition of
and the SNR; howeverk-Best search does not necessarilthe partial derivatived(x*Ax)/0x = 2x*A [9]. By setting
yield ML performance. the numerator of (8) equal to zero, we obtain

I1l. PROPOSEDLAYERED SPACE-TIME Arxy = v Brxg (9)

MIMO D ETECTION TECHNIQUE . . . .
Q Equation (9) defines a generalized eigenvalue problem,avher

The non-linear BLAST detection algorithm remains ag, = . ¢ js the generalized eigenvector associated with the
attractive solution due to its substantial lower compotzi generalized eigenvalug, of the matrix pair(Ay, By) [9]. A

complexity compared to ML and improved performance relggeneralized eigenvalue decomposition technique can beé use
tive to the linear MMSE algorithm; however, there still ren& 1 find the eigenpairéy,, gx) [9].

a substantial gap between the performance of V-BLAST [16] )

and that of optimal ML detection [3]. Consider a spatial (7. &) = geig (hkh* H H: + U_nIn ) (10)

multiplexing MIMO system that experiences a richly-scagte ’ ko kg2t

wireless channel. We are interested in finding nulling viectoThe process of finding nulling vectors using the generalized

and their associated ordering that maximizes the signal-€lgenvalue decomposition in (10) must be repeated for the

noise-plus-interference ratio (SNIR). Lgt denote the nulling remainingn, — 1 layers.

vector associated with thie-th transmitted symbo$;,. If we Following the so-called optimum ordering [3] proposed in

multiply both sides of (1) by, then we can write (1) as  \.BLAST, the k-th nulling vectorg;, is computed as the gen-
" o % eralized eigenvector associated with thth largest eigenvalue
8Ly = gihwsi + nghjsj t e ) ~k- In [17] we proposed to use a different ordering strategy.
) Hﬂf o Our ordering scheme was motivated by the observation that

where the first term on the right hand side in (3) denotgge performance of the V-BLAST detector is especially letlit

the signal, the second term denotes the interference and ffiee worst sub-channel. Therefore, accurate detection of

last term denotes the noise. Then the SNIR which is @ e \weakest layer has a significant impact on the error rate

non-negative real-valued number correspondingjtocan be performance of the system. We start with the worst sub-

written as follows: channel and detect the weakest layer optimally using an

E.{|sk|*g;hih}gr} exhaustive search over all possible transmitted symbols fr
Tk Es{ D |sj|2g,’;hjh’;-gk} +En{g};nn*gk} constellgtion@. The remainin_guT -1 If_;lyers then use the
J#k ' conventional V-BLAST “best-first” ordering.
B o2grhihigy The pseudo-code of the proposed detection scheme is shown
02 Y gihjhigy + 81021, .8k in AIgorl_thm 2. After def[ermmlng th(_e order_mg and calcirat
j#k the nulling vectors using generalized eigenvalue decompo-
g [hehy ] gk sitions, the detection process starts out by canceling the
= . [H*Hf e } (4)  contribution of a tentatlve. cand!date symbgle Q from the
8 [HRHE T G2 lnr 8k weakest layeF: of the received signat, wherej = 1,...,|Q|
For a clearer representation, we define two matrices and |Q| is the cardinality of signal constellation. After de-
. tecting the remainingy — 1 layers using the conventional
Ar = hyh ) ®) sequence of ordered nulling, slicing and cancelation, aor er
B, = H;H.+ U—ZInR (6) Metricg; = |Hs; —y||* associated with the tentative symbol
o5 s}, is computed, where; = [s], s3,--- s3] is the detected

Note thatAy is a positive-semidefinite (i.eg;hihjgr > 0) symbol vector, assuming that symbg| was transmitted from

Hermitian matrix of rank2one aniB; is a positive-definite antennak. This process is then repeatfd| — 1 times for all

matrix (i.e.,gj [H;H: + ZI] g > 0) [9]. The SNIR~;, can the remaining tentative candidate symbols in the consi@tia
g5

now be written as: ’ Q. Then the algorithm chooses the symbol vestpwith the
<* A smallest error metri¢; as the detected symbol vector. We
kA kX . J
i = flgr = xx) = x'Brxs (7)  will refer to the detection process of symbol vectgr for
k

o ) ) _ each tentative symbaf, as a sub-detector.
One approach to finding the maximufiix;) (i.e., the maxi-

mum SNIR) is to first obtain its gradient IV. SIMULATION RESULTS
2% Ay (x:Brxp) — 2x By (X1 Agxy,) _The algorithm proposed in [17] used tdizect matrix inver-
Vixk) = (x:Brxp)? sion techniques [9], [18] to calculate the nulling vectonsl a
k

o (x A B their associated ordering that maximizes th'?nal-to-noise
_ 2(xAr - xiBen) ratio using the MMSE criteriorG = (H*H + Z1,,,.)~'H*.
X Brxy, In this work we instead use nulling vectors and an orderiag th
2(Aka — Yk Bka) maximize thesignal-to-noise-plus-interference ratissing the
XZBka

generalized eigenvalue decomposition technique. Henge,

(8)



Algorithm 2 Proposed detection algorithm.

H= H;
for (i =1;1 <nr;i++) do
if > 1 then o ,
(7, 8:) = max geig (h;h; , HE' + %1, ) ;
] s
else o o ,
(7,8:) = min geig (h;h; , HH' + %1, ) o
end if )
o(i) =,
H = Hs;
end for —&— MMSE BLAST
for (every received symbol vectgr in a block) do ot ML )
for (j =1;5< |Q|,j + +) do = = = Proposed detector (geig)
y=Y; .
]f: O(1); {Get weakest layer} 1075 s 0 5 20 P 0
y=y hksk, {Cancel tentative symbol} SNR
for (i =2;i <np;i++) do
k = O(1); {Get strongest layer to be detected }
Sx=gry; {Nulling} Fig. 1. Symbol error rate of ML and our proposed detectioresas for a
K= O(sk); {slicing} 4 x 4 16-QAM MIMO system over a Rayleigh fading channel.
S{C = Sk;
if (¢ <mnr) then
¥y=¥ — hisk; {Cancelation} important property of the CG algorithm is that it takes at
?jnfd if most n iterations to find a minimum of am-dimensional
?‘: ﬁhs — vl quadratic functionf(x). An important point to note is that all
end for ’ eigenvalues oB;, are positive and sincd,, is a Hermitian
£ = min(&;); matrix, X; Bxx;, is always real-valued. Thus the denominator
return. se; of (8) is a positive scalar that does not change the direction
end for in the convergence off(x) and, hence, does not play an

important role in finding the direction of maximum rate
of decrease forf(x) in the CG algorithm. Moreover, the

matrix inversion operations in the algorithm proposed ifij[1 Numerator of (8) can be written as follows:

are replaced witm generalized eigenvalue decompositions. Bixpx) ApXp
Since By, is full rank and non-singular, the generalized ***** —Brxk = Apxp — T xBixp
eigenvalue problemA;x; = ~Bixi can be solved by ((X Bixu)I — Brxpx: )Aka
reducing it to a standard eigenvalue probl®y'A.x;, = = k B, k (11)
k

~vkX) Or using techniques such as QZ decomposition [9]. Fig.
1 shows the SER of alternative detection schemes foxal  where, following the CG algorithm, we use the numerator of
uncoded MIMO system utilizing 16-QAM modulation over(11) as an approximation to the gradient vector.
a Rayleigh fading channel. Simulation results show that theFig. 2 confirms that the SER performance of the proposed
proposed detection scheme can achieve SER performance tlgaéction scheme, using the CG iterative algorithm to solve
essentially matches that of the ML detector. the generalized eigenvalue decompositions, closely reatch
It is shown in [19] that ifBy, is ill-conditioned with respect that of ML detector. To ensure sufficient accuracy and a
to inversion, the condition number is large and the diredeterministic computation, we limit the number of iteraso
methods may be numerically unstable and/or have largeserrtor four as a stopping criteria for computing each eigenpair
in computed eigenvalues and eigenvectors. An alternatiwden using the iterative CG algorithm. As can be seen in Fig.
approach to directly computing the eigenpairg;,gr) is 2, both algorithms in [17], which used direct matrix inversi
to useiterative algorithms that converge almost always t@o calculate the nulling vectors and the associated orderin
a solution asymptotically within acceptable precisioneaft that maximizes the signal-to-noise ratio, and the proposed
a small number of iterations. We propose to calculate botterative algorithm, which uses the generalized eigerealu
the nulling vectors and their associated ordering using decomposition technique to find the nulling vectors and the
iterative method. We are especially interested in a nurakri@associated ordering that maximizes the signal-to-noiigs-p
algorithm that converges to the solution in a small numbeartterference ratio, result in overlapping SER vs. SNR perfo
of iterations (e.g., three to five iterations). The Conjegamance. An important point to note is that these simulations
Gradient (CG) algorithm [20] is an iterative approach foresults are obtained using floating-point implementatiohs
the numerical solution of a system of linear equations who#igese algorithms. In practice, due to the higher hardwase co
matrix is symmetric (i.e.Q = Q*) and positive definite (i.e., and complexity of floating-point hardware, fixed-point it
for all non-zero complex-valued vectogs z*Qz > 0). The metic is often preferred in very-large-scale integratigh$!)



and field-programmable gate array (FPGA) implementationgceived vectoy and dynamically calculating the constellation
Therefore, the choice of an algorithm depends on variopsints within the circle, we propose to create a circle wité t
factors, such as the computational complexity, numerital ssame radiusl,. Utilizing this approach, while reducing the
bility of its operations, round-off errors and desired aecy, search computations, one can readily trade off between the
and required hardware resources and expected throughputor rate performance and the required computation of the
For example, iterative algorithms may have smaller storageoposed detector. By choosing an appropriate radjusne
requirements than direct methods [18] and become preferaban optimize the trade-off between the required amount of
for relatively large matrices or when the problem is close fwomputational processing and error rate performance of the
singular [21]. algorithm.

To perform the non-exhaustive search for the weakest layer,
first an initial circle S,(d,) with radius d, is constructed
around the origin. All possible constellation points withi
S,(d,) can be precomputed and stored during the initialization
step. The initial circleS,(d,) is independent of the received
signals and the channel conditions. The numberof points
within S,(d,) depends on the initial radiug, and the signal
constellationQ. Every received signal vectgr is decoded to
p using the V-BLAST algorithm. A variety of algorithms can
be used for preliminary decoding since the more accurate the
initial decoding, the better the overall performance of dee
tection algorithm. Next, a displaced search cirSlgy, d,) is
107k *3?}“‘” from [14] using direct inversion ] constructed with radiug, centered about the weakest symbol
- - = Proposed detector (iterative inversion) X sj, of the preliminary decoded point and the constellation
6 ‘ ‘ ‘ ‘ ‘ points that lie outsid& (s, d,) are excluded from the search.

0 5 10 SN1F§ 20 25 30 For example, as shown in Fig. 4,4+ 7j is the the symbol
@ associated with the weakest layer in the preliminary dedode
' - ML detect . i ~ point p whered, = 3.2. Instead of searching over all other
e s oo i oo s o o %3 consellation points, a5 proposed in Algoithm 2, only the
using matrix inversion. ns = 3 constellation points(5 + 55,5 + 74,7 4+ 55} in the
circle S(7 + 75,3.2) are considered.

V. PERFORMANCECOMPLEXITY TRADE-OFF Q

+ $(7+7j,3.2
An important property of Algorithm 2 is that the detection 10- (2732
process for the transmitted symbol vectorcorresponding 8-
to each possible choice of the tentative sigral (for the 6 A
worst layer) can be performed independently and simulta- o o o o0 o
neously, which leads naturally to a parallel implementatio 4: e o o i;(,’g).\ o o o
of the sub-detectors. For a compact implementation, one 2- B 9 0N
. . e o 6 o| e o o o
can implement only one instance of the sub-detector and 0 Lo b ol y 1
time multiplex it among othetQ| — 1 sub-detectors at the 2. 5\00 (&%} o o
expense of lowering the symbol detection throughput. Note e o 0 w9/% o o o
that as each sub-detector requires one fewer nulling and 4- e o o ole o o
slicing operations (for the weakest layer), the computetio 6-
complexity of the proposed detector is roughy| times that 8. DS TS S .
of BLAST detection. This can be significant, especially for -10 -5 0 5 10

hlgh_.order mOdU|a.tlon schemes. We propose to reduce_ m& 3. An example of the search circle around the weakest lafydecoded
required computation of the proposed detector substintighoint in a 64-QAM modulation withi, = 3.2.

by searching within a subsé* C Q of constellation points

within the weakest layer instead of an exhaustive search oveNote that fixed-sphere decoding searches over lattice rgecto
the entire constellation points iQ. This subset should be Hs generated by a subset of all constellation points around
chosen to minimize the computations, while also large ehouthe received vectoy for which Hs lies within ahypersphere

to provide acceptable performance. This approach redueéth a fixed radiusi,, i.e., ||y — Hs||* < d2. In the proposed
the computational requirements compared to ML exhaustigkgorithm we used a searcircle with a fixed radius/, around
search for the weakest layer considerably. Moreover, rattihe weakest layer of each received vegtanly and detect the
than customizing a newly-sized search circular searchespageakest layer near-optimally using an exhaustive searttirwi
with a variable radius around the weakest layer of eaehsubseQ* C Q of constellation points. The remainimg-—1



layers are detected using successive interference céinoelaa line search for the first step alony = —V f(x;). For

Fig. 4 shows the symbol error rate of the reduced approach the remaining steps, the CG algorithm uses a set of mutually
a4 x 4 64-QAM MIMO system with the radius of the searchconjugate directions in which the next search directiop, is
space set ta, = 6 andd, = 3.2. As shown, with increasing constrained to be conjugate (@-orthogonal) to the previous.

d, the error rate decreases at the expense of increasing Tw® vectorsd,,; andd,; areQ-orthogonal with respect to any

computational complexity of the search within the circle.

SER

symmetric positive definite matri€ if d;, ;Qd; = 0. Thus,

in the remaining steps a plane rather than a line, which is
used in the steepest descent algorithm [9], is searchedtand i
is guaranteed to produce a new, linearly-independent lsearc
direction. One vector will be chosen to be the normalized
gradient vectorg; and the other vector will be chosen to be
d;11 = 6;d; — g1, Where the coefficients; is given by

g7 18i+1/8;gi. The step length ofy; should be chosen so
thatd,; andd;; are conjugate. The iterative process continues
until the minimum in f(x) has been determined within a

10

chosen accuracy.

il = = = Proposed detector
—e— Reduced complexity detector (d 0=6)

Algorithm 3 Conjugate gradient minimum-find method.

. 1 =0;
—e— Reduced complexity detector (d 0—3.2) x; = h’“v/jjlh’ﬁn;
0 —— MIT detector‘ ‘ ‘ ‘ 8 = 7o)
d; = —gi;
0 5 10 15 20 25 30 e
SNR i = 8i &i;
dB Mit1 = 7is
while (i < imaz andni1 > e2no) do
Fig. 4. Symbol error rate of the reduced approach for 64-QAd & = 6. a; = d*_E;’idL;
Xit1 :ixi :‘rlaisii
gii1 = — Vf(xip1) .
TR V(%)
VI. CONCLUSIONS M= i
Multiple antenna communication systems can achieve re- "i+! :.3271%”1?
markably high data rates. We presented a layered detection dl,-:l Zﬁ_gl;g%.
scheme, similar to the conventional Bell Laboratories lagle i=i+1;

Space-Time (BLAST) algorithm but with a different layer end while

ordering. The proposed layered detector has higher coiitylex
than the conventional BLAST detector, but it offers signifi-
cantly improved performance that closely matches that of a
maximum likelihood (ML) detector. In order to decrease them
computational requirements, we proposed a conjugateagradi
iterative algorithm to replace the direct numerical sa@ntfor
generalized eigenvalue decompositions. Our simulatieult®
show that using only three or four iterations, the perforogan
of our proposed scheme closely matches that of optimal ML
detection. One can also trade off computational complexit{#!
with the error rate performance using our proposed reduced-
complexity algorithm. [5]

(2]
(31

APPENDIX

A. CONJUGATE GRADIENT METHOD (61

The pseudo-code of the CG algorithm is shown in Al-
gorithm 3. The search for a minimum ¢f(x) starts at an
arbitrary pointx, and traverses along a first direction vector
dy and stops at the point; = xg + agdg, whereag > 0 is
the line search parameter that determines the length ofriie fi
step that minimizeg (x) along the line. The direction with the [9]
maximum rate of increase fof(x) at x; can be represented
by the gradient vectolV f(x;). Since f(x) decreases most
rapidly along the direction of a negative gradient, CG penf®

(7]

(8]
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