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Abstract—This brief presents an improved layered space-time
symbol detection algorithm for multiple-input multiple-o utput
(MIMO) wireless systems. The proposed detection scheme utilizes
a different layer ordering strategy than the so-called optimal
ordering used in the conventional Bell Laboratories Layered
Space-Time (BLAST) algorithm. To calculate the nulling vectors
and their associated ordering, instead of using direct numerical
techniques, we utilize a numerically-stable iterative solution. It is
shown that the performance of the proposed detector approaches
closely that of an optimal maximum likelihood (ML) detector
at the expense of greater computational complexity compared
to BLAST. Utilizing our proposed parameterizable detector, one
can trade off between the computational requirement and the
error rate performance.

Index Terms—MIMO detection, layered space-time decoding,
BLAST, generalized eigenvalue decomposition.

Notation: x∗ denotes the complex conjugate ofx, |Q|
denotes the cardinality of signal constellationQ, E{·} denotes
the expectation operator,‖.‖ denotes the Euclidean norm,
I denotes the identity matrix,(·)−1 denotes the inverse of
a matrix, (·)∗ denotes the denotes the conjugate transpose
(Hermitian) of a matrix.

I. I NTRODUCTION

In a spatial multiplexing MIMO system withnT transmit-
ting antennas andnR receiving antennas, the high-rate data
stream is demultiplexed intonT parallel sub-streams and the
transmitter sendsnT independent symbolssj simultaneously
over a richly-scattered wireless channel , wherej = 1, . . . , nT ,
chosen from a finite complex-valued signal constellationQ.
ThenR-dimensional vector of received signaly can be written
as follows:

y = Hs + n =

nT
∑

j=1

hjsj + n, (1)

wheres denotes thenT ×1 transmitted signal vector andn is
annR×1 noise vector with independent identically distributed
(i.i.d.) circularly-symmetric complex Gaussian components
with zero mean and unit variance, i.e., the components are
from CN (0, 1). The nR × nT channel matrix is denoted by
H = [h1, . . . hnT

], wherehk is the column vector of complex
transfer gains from thek-th transmitter antenna to allnR

receiver antennas. For a flat-fading Rayleigh channel model
with no line-of-sight, each elementhij in H (i.e., the gain
from transmitter antennaj to receiver antennai) is an i.i.d.

circularly-symmetric complex Gaussian random variable from
CN (0, 1) [1].

The task of the MIMO detector is to estimate the symbol
vector s from the received signal vectory. Maximum likeli-
hood (ML) detection provides optimal error rate performance
for uncoded MIMO systems. At the receiver, assuming that the
channel matrixH is known (or estimated perfectly), an ML
detector computes an estimateŝ for each transmitted space-
time (ST) symbols using

ŝ = arg min
s∈QnT

{∥

∥y − Hs
∥

∥

}

(2)

where the minimum is sought over all possiblenT -element
ST symbolss ∈ QnT . Because an ML detector requires an
exhaustive search over a typically large set ofnT possible
transmitted ST symbols inQnT , its computational complexity
grows exponentially with the number of transmit antennas
and the signal constellation cardinality|Q|. Simple linear
detection schemes use low complexity filtering, designed
using the zero-forcing (ZF) criterion or the minimum mean-
square error (MMSE) criterion. While the ZF and MMSE
detection schemes are computationally-efficient, their bit error
rate performance is far from that of optimal ML detection [2].

Numerous detection algorithms have been proposed over the
last decade with error rate performances and computational
complexities residing between those of linear detection and
optimal ML detection. In this brief we propose a layered
detection algorithm similar to conventional Bell Laboratories
Layered Space-Time (BLAST) with the following merits: (i)
its error performance approaches closely that of a ML detector;
(ii) it uses a numerically-stable iterative solution instead
of a direct but computationally-intensive solution; (iii)its
complexity is not variable, which makes the detection process
predictable (deterministic); and (iv) it can be parameterized
to readily trade off the computational requirement with the
error rate performance. These merits are obtained with a
computational complexity that is greater than that of the
BLAST detection algorithm.

The rest of this brief is organized as follows. Section II
briefly reviews MIMO detection schemes. Section III presents
our proposed detection scheme. An iterative solution is utilized
for an efficient implementation of the proposed technique.
Section IV presents the simulation results. Section V presents



a variation of the proposed detector with parameterizable com-
plexity. Finally, Section VI makes some concluding remarks.

II. B RIEF OVERVIEW OF MIMO D ETECTION SCHEMES

Simple linear detection schemes use low complexity fil-
tering to eliminate the multiple-stream interference (MSI).
For example, ZF detection uses the Moore-Penrose pseudo
inverse G = (H∗H)−1H∗ of the channel matrixH to
reconstruct transmitted symbols ass = Gy − Gn. Since the
noise vector is weighted by the inverse singular values ofH,
when the channel matrix becomes ill-conditioned in certain
random-fading events, ZF can result in poor performance
due to the noise enhancement. When the signal-to-noise ratio
(SNR)σ2

s/σ2
n is estimated at the receiver, the MMSE criterion

G = (H∗H +
σ2

n

σ2
s

InT
)−1H∗ can be used instead to balance

MSI mitigation with noise enhancement and thus minimize
the total error. At low and mid-range SNR values, the MMSE
outperforms the ZF receiver while at high SNR values the
MMSE receiver converges to the ZF performance.

The non-linear vertical BLAST (V-BLAST) algorithm de-
tects each layer (symbol) separately by using an iterative
decision feedback approach, as shown in Algorithm 1. Since
all nT components ofs utilize the same constellationQ,
the weakest layerk, i.e., the layer with the smallest post-
detection SNRE{|sk|2}/(σ2

n‖gk‖2), where sk denotes the
transmitted signal from thek-th transmitter antenna andgk

is the k-th row of G, will dominate the error performance
of the system. Thus it was recommended in [3] that the
detection algorithm start with the layer with the strongest
post-detection SNR (i.e., corresponding to the rowgk of G

with the minimum norm) and then proceed successively to
detect the symbol of the layer with the next weakest SNR. As
shown in Algorithm 1, after estimating and cancelingsk, hk

is zeroed and henceG must use a deflated versionHk̄ of H

in the next iteration, whereHk̄ denotes the matrix obtained
by zeroing columnk of H. The notationO(i) denotes the
layer k, where k ∈ {1, . . . , nT }, that is to be detected at
step i. Note that under the assumption of quasi-stationary
block-fading channels, the channel variation is negligible over
a coherence period and it changes independently from one
period to another. Therefore, nulling vectors need be computed
only once for every block of received symbols. For each layer
k, first an interference nulling step tries to reduce the amount
of interference towardssk by multiplying the received signal
y by a nulling vectorgk. Second, symbolsk is detected using
the slicer functionQ(·), which returns the nearest symbol in
the signal constellationQ to the estimated symbol̂sk. Finally,
the predicted interference on thenT − 1 other signals due
to sk can be subtracted from the received signal. V-BLAST
proceeds iteratively through the above three steps until all nT

transmitted symbols are recovered.
Various non-exhaustive tree-based search detectors with op-

timal (or near-optimal) performance have been proposed. The
main idea is to prune the exhaustive search space and thereby
provide substantial computational saving over the ML brute-
force searching method. Depending on how the tree traversal

Algorithm 1 The MMSE V-BLAST algorithm.

Ĥ = H;
for (i = 1; i ≤ nT ; i++) do

G = (Ĥ∗Ĥ +
σ2

n

σ2
s

I)−1Ĥ∗;

O(i) = k = min
j

‖gj‖
2; {Ordering}

gi = G(k, :);
Ĥ = Ĥk̄;

end for
for (every received symbol vectory in a block)do

for (i = 1; i ≤ nT ) do
k = O(i);
ŝk =gky; {Nulling}
sk =Q(ŝk); {Slicing}
if (i < nT ) then

y=y− hksk; {Cancelation}
end if

end for
return s;

end for

algorithms carry out the non-exhaustive search problem [4],
they generally fall into two main categories, namely the depth-
first search and breadth-first search methods. Sphere decoding
(SD) is probably the most attractive depth-first approach [5],
[6]. The performance of SD closely approaches that of ML
with significantly reduced average complexity compared to
ML detection. The SD algorithm reduces the number of
candidate ST symbols to be considered in the tree-based search
by finding the set{s} of ST symbols closest to the received
vector symboly for which Hs lies within a hypersphere with
given radiusdo, i.e.,‖y − Hs‖2 < d2

o. Usually,do is adjusted
according to the noise variance [6], [7]. Unfortunately, the size
of the searched solution space, and hence its instantaneous
throughput, is variable and is directly related to the channel
conditions and also the operating SNR [8]. When the channel
is ill-conditioned (i.e., a channel whose condition numberis
much greater than one) [9], the computational complexity
of SD substantially increases and approaches that of ML
detection (i.e., exponential innT ) [5], [10]. However, for
sufficiently large SNR it behaves polynomially innT as
long asnT is not too large [6]. In addition to the average
computational complexity (i.e., averaged over a sufficient
number of channel realizations) of SD, which approaches that
of ML detection [11], the variable complexity of SD makes
this scheme inconvenient for practical implementations where
data needs to be processed at a constant rate. To overcome the
limitations of SD, the fixed-sphere decoding (FSD) searches
over only a fixed number of lattice vectorsHs, generated by a
subset of all constellation points around the received vector y,
independent of the channel conditions and noise level, yielding
a fixed complexity algorithm [12]. Moreover, FSD does not
suffer from the sequential nature of the SD and all the paths in
the tree structure can be searched in parallel. Nevertheless, the
complexity of the FSD is high [13] and its performance falls
short of being optimum [14]. Similarly, theK-Best breadth-
first search algorithm [15] provides a deterministic constant



throughput which is independent of the channel realization
and the SNR; however,K-Best search does not necessarily
yield ML performance.

III. PROPOSEDLAYERED SPACE-TIME

MIMO D ETECTION TECHNIQUE

The non-linear BLAST detection algorithm remains an
attractive solution due to its substantial lower computational
complexity compared to ML and improved performance rela-
tive to the linear MMSE algorithm; however, there still remains
a substantial gap between the performance of V-BLAST [16]
and that of optimal ML detection [3]. Consider a spatial
multiplexing MIMO system that experiences a richly-scattered
wireless channel. We are interested in finding nulling vectors
and their associated ordering that maximizes the signal-to-
noise-plus-interference ratio (SNIR). Letgk denote the nulling
vector associated with thek-th transmitted symbolsk. If we
multiply both sides of (1) byg∗

k, then we can write (1) as

g∗
ky = g∗

khksk +
∑

j 6=k

g∗
khjsj + g∗

kn, (3)

where the first term on the right hand side in (3) denotes
the signal, the second term denotes the interference and the
last term denotes the noise. Then the SNIRγk, which is a
non-negative real-valued number corresponding togk, can be
written as follows:

γk =
Es

{

|sk|2g∗
khkh

∗
kgk

}

Es

{
∑

j 6=k

|sj |2g∗
khjh

∗
jgk

}

+ En

{

g∗
knn∗gk

}

=
σ2

sg
∗
khkh

∗
kgk

σ2
s

∑

j 6=k

g∗
khjh

∗
jgk + g∗

kσ2
nInR

gk

=
g∗

k

[

hkh
∗
k

]

gk

g∗
k

[

Hk̄H
∗
k̄

+
σ2

n

σ2
s

InR

]

gk

(4)

For a clearer representation, we define two matrices

Ak = hkh
∗
k (5)

Bk = Hk̄H
∗
k̄

+
σ2

n

σ2
s

InR
(6)

Note thatAk is a positive-semidefinite (i.e.,g∗
khkh

∗
kgk ≥ 0)

Hermitian matrix of rank one andBk is a positive-definite
matrix (i.e.,g∗

k

[

Hk̄H
∗
k̄

+
σ2

n

σ2
s

I
]

gk > 0) [9]. The SNIRγk can
now be written as:

γk = f(gk = xk) =
x∗

kAkxk

x∗
kBkxk

(7)

One approach to finding the maximumf(xk) (i.e., the maxi-
mum SNIR) is to first obtain its gradient

∇f(xk) =
2x∗

kAk(x∗
kBkxk) − 2x∗

kBk(x∗
kAkxk)

(x∗
kBkxk)2

=
2
(

x∗
kAk − x∗

kBk γk

)

x∗
kBkxk

=
2
(

Akxk − γk Bkxk

)

x∗
kBkxk

(8)

where we use the Hermitian properties and the definition of
the partial derivative∂(x∗Ax)/∂x = 2x∗A [9]. By setting
the numerator of (8) equal to zero, we obtain

Akxk = γkBkxk (9)

Equation (9) defines a generalized eigenvalue problem, where
xk 6= 0 is the generalized eigenvector associated with the
generalized eigenvalueγk of the matrix pair(Ak,Bk) [9]. A
generalized eigenvalue decomposition technique can be used
to find the eigenpairs(γk,gk) [9].

(γk,gk) = geig

(

hkh
∗
k , Hk̄H

∗
k̄

+
σ2

n

σ2
s

InR

)

(10)

The process of finding nulling vectors using the generalized
eigenvalue decomposition in (10) must be repeated for the
remainingnT − 1 layers.

Following the so-called optimum ordering [3] proposed in
V-BLAST, the k-th nulling vectorgk is computed as the gen-
eralized eigenvector associated with thek-th largest eigenvalue
γk. In [17] we proposed to use a different ordering strategy.
Our ordering scheme was motivated by the observation that
the performance of the V-BLAST detector is especially limited
by the worst sub-channel. Therefore, accurate detection of
the weakest layer has a significant impact on the error rate
performance of the system. We start with the worst sub-
channel and detect the weakest layer optimally using an
exhaustive search over all possible transmitted symbols from
constellationQ. The remainingnT − 1 layers then use the
conventional V-BLAST “best-first” ordering.

The pseudo-code of the proposed detection scheme is shown
in Algorithm 2. After determining the ordering and calculating
the nulling vectors using generalized eigenvalue decompo-
sitions, the detection process starts out by canceling the
contribution of a tentative candidate symbolsj

k ∈ Q from the
weakest layerk of the received signaly, wherej = 1, . . . , |Q|
and |Q| is the cardinality of signal constellation. After de-
tecting the remainingnT − 1 layers using the conventional
sequence of ordered nulling, slicing and cancelation, an error
metric ξj = ‖Hsj − y‖2 associated with the tentative symbol
sj

k is computed, wheresj = [sj
1, s

j
2, · · · , sj

nT
]T is the detected

symbol vector, assuming that symbolsj
k was transmitted from

antennak. This process is then repeated|Q| − 1 times for all
the remaining tentative candidate symbols in the constellation
Q. Then the algorithm chooses the symbol vectorsj with the
smallest error metricξj as the detected symbol vector. We
will refer to the detection process of symbol vectorsj for
each tentative symbolsj

k as a sub-detector.

IV. SIMULATION RESULTS

The algorithm proposed in [17] used thedirect matrix inver-
sion techniques [9], [18] to calculate the nulling vectors and
their associated ordering that maximizes thesignal-to-noise
ratio using the MMSE criterionG = (H∗H +

σ2
n

σ2
s

InT
)−1H∗.

In this work we instead use nulling vectors and an ordering that
maximize thesignal-to-noise-plus-interference ratiousing the
generalized eigenvalue decomposition technique. Hence,nT



Algorithm 2 Proposed detection algorithm.

Ĥ = H;
for (i = 1; i ≤ nT ; i + +) do

if i > 1 then
(γ,gi) = max

j
geig

(

ĥjĥ
∗
j , ĤĤ∗ +

σ2
n

σ2
s

InR

)

;

else
(γ,gi) = min

j
geig

(

ĥjĥ
∗
j , ĤĤ∗ +

σ2
n

σ2
s

InR

)

;

end if
O(i) = γ;
Ĥ = Ĥγ̄ ;

end for
for (every received symbol vectory in a block)do

for (j = 1; j ≤ |Q|; j + +) do
ŷ = y;
k = O(1); {Get weakest layer}
ŷ= ŷ − hksj

k; {Cancel tentative symbol}
for (i = 2; i ≤ nT ; i + +) do

k = O(i); {Get strongest layer to be detected}
ŝk =gkŷ; {Nulling}
sk =Q(ŝk); {Slicing}
sj

k = sk;
if (i < nT ) then

ŷ= ŷ − hksk; {Cancelation}
end if

end for
ξj = ‖Hsj − y‖2;

end for
ℓ = min

j
(ξj);

return sℓ;
end for

matrix inversion operations in the algorithm proposed in [17]
are replaced withnT generalized eigenvalue decompositions.

Since Bk is full rank and non-singular, the generalized
eigenvalue problemAkxk = γkBkxk can be solved by
reducing it to a standard eigenvalue problemB−1

k Akxk =
γkxk or using techniques such as QZ decomposition [9]. Fig.
1 shows the SER of alternative detection schemes for a4× 4
uncoded MIMO system utilizing 16-QAM modulation over
a Rayleigh fading channel. Simulation results show that the
proposed detection scheme can achieve SER performance that
essentially matches that of the ML detector.

It is shown in [19] that ifBk is ill-conditioned with respect
to inversion, the condition number is large and the direct
methods may be numerically unstable and/or have large errors
in computed eigenvalues and eigenvectors. An alternative
approach to directly computing the eigenpairs(γk,gk) is
to use iterative algorithms that converge almost always to
a solution asymptotically within acceptable precision after
a small number of iterations. We propose to calculate both
the nulling vectors and their associated ordering using an
iterative method. We are especially interested in a numerical
algorithm that converges to the solution in a small number
of iterations (e.g., three to five iterations). The Conjugate
Gradient (CG) algorithm [20] is an iterative approach for
the numerical solution of a system of linear equations whose
matrix is symmetric (i.e.,Q = Q∗) and positive definite (i.e.,
for all non-zero complex-valued vectorsz, z∗Qz > 0). The
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Fig. 1. Symbol error rate of ML and our proposed detection schemes for a
4× 4 16-QAM MIMO system over a Rayleigh fading channel.

important property of the CG algorithm is that it takes at
most n iterations to find a minimum of ann-dimensional
quadratic functionf(x). An important point to note is that all
eigenvalues ofBk are positive and sinceBk is a Hermitian
matrix, x∗kBkxk is always real-valued. Thus the denominator
of (8) is a positive scalar that does not change the direction
in the convergence off(x) and, hence, does not play an
important role in finding the direction of maximum rate
of decrease forf(x) in the CG algorithm. Moreover, the
numerator of (8) can be written as follows:

Akxk − γBkxk = Akxk −
Bkxkx

∗
kAkxk

x∗
kBkxk

=

(

(x∗
kBkxk)I − Bkxkx

∗
k

)

Akxk

x∗
kBkxk

(11)

where, following the CG algorithm, we use the numerator of
(11) as an approximation to the gradient vector.

Fig. 2 confirms that the SER performance of the proposed
detection scheme, using the CG iterative algorithm to solve
the generalized eigenvalue decompositions, closely matches
that of ML detector. To ensure sufficient accuracy and a
deterministic computation, we limit the number of iterations
to four as a stopping criteria for computing each eigenpair
when using the iterative CG algorithm. As can be seen in Fig.
2, both algorithms in [17], which used direct matrix inversion
to calculate the nulling vectors and the associated ordering
that maximizes the signal-to-noise ratio, and the proposed
iterative algorithm, which uses the generalized eigenvalue
decomposition technique to find the nulling vectors and the
associated ordering that maximizes the signal-to-noise-plus-
interference ratio, result in overlapping SER vs. SNR perfor-
mance. An important point to note is that these simulations
results are obtained using floating-point implementationsof
these algorithms. In practice, due to the higher hardware cost
and complexity of floating-point hardware, fixed-point arith-
metic is often preferred in very-large-scale integration (VLSI)



and field-programmable gate array (FPGA) implementations.
Therefore, the choice of an algorithm depends on various
factors, such as the computational complexity, numerical sta-
bility of its operations, round-off errors and desired accuracy,
and required hardware resources and expected throughput.
For example, iterative algorithms may have smaller storage
requirements than direct methods [18] and become preferable
for relatively large matrices or when the problem is close to
singular [21].
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Fig. 2. Symbol error rate of ML detection and our proposed detection using
conjugate gradient algorithm with four iterations and the detector from [17]
using matrix inversion.

V. PERFORMANCE-COMPLEXITY TRADE-OFF

An important property of Algorithm 2 is that the detection
process for the transmitted symbol vectors corresponding
to each possible choice of the tentative signalsj (for the
worst layer) can be performed independently and simulta-
neously, which leads naturally to a parallel implementation
of the sub-detectors. For a compact implementation, one
can implement only one instance of the sub-detector and
time multiplex it among other|Q| − 1 sub-detectors at the
expense of lowering the symbol detection throughput. Note
that as each sub-detector requires one fewer nulling and
slicing operations (for the weakest layer), the computational
complexity of the proposed detector is roughly|Q| times that
of BLAST detection. This can be significant, especially for
high-order modulation schemes. We propose to reduce the
required computation of the proposed detector substantially
by searching within a subsetQ∗ ⊂ Q of constellation points
within the weakest layer instead of an exhaustive search over
the entire constellation points inQ. This subset should be
chosen to minimize the computations, while also large enough
to provide acceptable performance. This approach reduces
the computational requirements compared to ML exhaustive
search for the weakest layer considerably. Moreover, rather
than customizing a newly-sized search circular search space
with a variable radius around the weakest layer of each

received vectory and dynamically calculating the constellation
points within the circle, we propose to create a circle with the
same radiusdo. Utilizing this approach, while reducing the
search computations, one can readily trade off between the
error rate performance and the required computation of the
proposed detector. By choosing an appropriate radiusdo one
can optimize the trade-off between the required amount of
computational processing and error rate performance of the
algorithm.

To perform the non-exhaustive search for the weakest layer,
first an initial circle So(do) with radius do is constructed
around the origin. All possible constellation points within
So(do) can be precomputed and stored during the initialization
step. The initial circleSo(do) is independent of the received
signals and the channel conditions. The numbernS of points
within So(do) depends on the initial radiusdo and the signal
constellationQ. Every received signal vectory is decoded to
p using the V-BLAST algorithm. A variety of algorithms can
be used for preliminary decoding since the more accurate the
initial decoding, the better the overall performance of thede-
tection algorithm. Next, a displaced search circleS(sk, do) is
constructed with radiusdo centered about the weakest symbol
sk of the preliminary decoded pointp and the constellation
points that lie outsideS(sk, do) are excluded from the search.
For example, as shown in Fig. 4,7 + 7j is the the symbol
associated with the weakest layer in the preliminary decoded
point p wheredo = 3.2. Instead of searching over all other
63 constellation points, as proposed in Algorithm 2, only the
ns = 3 constellation points{5 + 5j, 5 + 7j, 7 + 5j} in the
circle S(7 + 7j, 3.2) are considered.

��� �� � � ����������
�����
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Fig. 3. An example of the search circle around the weakest layer of decoded
point in a 64-QAM modulation withdo = 3.2.

Note that fixed-sphere decoding searches over lattice vectors
Hs generated by a subset of all constellation points around
the received vectory for which Hs lies within ahypersphere
with a fixed radiusdo, i.e., ‖y − Hs‖2 < d2

o. In the proposed
algorithm we used a searchcircle with a fixed radiusdo around
the weakest layer of each received vectory only and detect the
weakest layer near-optimally using an exhaustive search within
a subsetQ∗ ⊂ Q of constellation points. The remainingnT −1



layers are detected using successive interference cancelation.
Fig. 4 shows the symbol error rate of the reduced approach for
a 4× 4 64-QAM MIMO system with the radius of the search
space set todo = 6 anddo = 3.2. As shown, with increasing
do the error rate decreases at the expense of increasing the
computational complexity of the search within the circle.
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Fig. 4. Symbol error rate of the reduced approach for 64-QAM and do = 6.

VI. CONCLUSIONS

Multiple antenna communication systems can achieve re-
markably high data rates. We presented a layered detection
scheme, similar to the conventional Bell Laboratories Layered
Space-Time (BLAST) algorithm but with a different layer
ordering. The proposed layered detector has higher complexity
than the conventional BLAST detector, but it offers signifi-
cantly improved performance that closely matches that of a
maximum likelihood (ML) detector. In order to decrease the
computational requirements, we proposed a conjugate gradient
iterative algorithm to replace the direct numerical solution for
generalized eigenvalue decompositions. Our simulation results
show that using only three or four iterations, the performance
of our proposed scheme closely matches that of optimal ML
detection. One can also trade off computational complexity
with the error rate performance using our proposed reduced-
complexity algorithm.

APPENDIX

A. CONJUGATEGRADIENT METHOD

The pseudo-code of the CG algorithm is shown in Al-
gorithm 3. The search for a minimum off(x) starts at an
arbitrary pointx0 and traverses along a first direction vector
d0 and stops at the pointx1 = x0 + α0d0, whereα0 > 0 is
the line search parameter that determines the length of the first
step that minimizesf(x) along the line. The direction with the
maximum rate of increase forf(x) at xi can be represented
by the gradient vector∇f(xi). Since f(x) decreases most
rapidly along the direction of a negative gradient, CG performs

a line search for the first step alongdi = −∇f(xi). For
the remaining steps, the CG algorithm uses a set of mutually
conjugate directions in which the next search directiondi+1 is
constrained to be conjugate (orQ-orthogonal) to the previous.
Two vectorsdi+1 anddi areQ-orthogonal with respect to any
symmetric positive definite matrixQ if d∗

i+1Qdi = 0. Thus,
in the remaining steps a plane rather than a line, which is
used in the steepest descent algorithm [9], is searched and it
is guaranteed to produce a new, linearly-independent search
direction. One vector will be chosen to be the normalized
gradient vectorgi and the other vector will be chosen to be
di+1 = βidi − gi+1, where the coefficientβi is given by
g∗

i+1gi+1/g
∗
i gi. The step length ofαi should be chosen so

thatdi anddi+1 are conjugate. The iterative process continues
until the minimum in f(x) has been determined within a
chosen accuracyε.

Algorithm 3 Conjugate gradient minimum-find method.
i = 0;
xi = hk/||hk ||;
gi = ∇f(xi)

‖∇f(xi)‖2
;

di = −gi;
ηi = g∗

i gi;
ηi+1 = ηi;
while (i < imax andηi+1 > ε2η0) do

αi = ηi

d∗
i
Bdi+1

;
xi+1 = xi + αisi;

gi+1 = −
∇f(xi+1)

‖∇f(xi+1)‖2
;

ηi = ηi+1;
ηi+1 = g∗

i+1gi+1;
βi = ηi+1/ηi;
di+1 = βidi + gi+1;
i = i + 1;

end while
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