
1

Hardware Implementation of Nakagami and Weibull Variate Generators
Amirhossein Alimohammad, Saeed Fouladi Fard, Bruce F. Cockburn

Abstract—An efficient implementation of Nakagami-m and
Weibull variate generators on a single field-programmable gate
array (FPGA) is presented. The hardware model first generates a
correlated Rayleigh fading variate sequence and then transforms
it into a sequence of Nakagami-m or Weibull fading variates.
A biquad processor facilitates the compact implementation of
a Rayleigh variate generator with arbitrary autocorrelation
properties. A combination of logarithmic and linear domain
segmentations along with piece-wise linear approximations is
used to accurately implement the nonlinear numerical functions
required to transform the correlated Rayleigh fading process into
Nakagami-m or Weibull fading processes. When implemented
on a Xilinx Virtex-5 5VSX240TFF1738-2 FPGA, the fading
simulator uses only 1.6% of the configurable slices, 1.2% of the
DSP48E modules and 3 block memories, while operating at 120
MHz, generating 120 million complex variates per second. The
throughput can be increased up to 373 MHz with this FPGA if
two separate clock sources are utilized.

I. INTRODUCTION

Simulating radio propagation channels is a key step in the
design and performance verification of wireless communica-
tion systems. Fading channel simulators are widely used at the
baseband level for the early verification and characterization
of wireless transceiver designs. While software simulation of
fading channels is easier to develop and thus widely used,
hardware-based simulators have been shown to provide several
orders of magnitude of speed-up over software-based simula-
tors [1], [2]. Speed is an especially important factor when
many different fading scenarios must be simulated the wide
variety of operating modes supported by recent wireless stan-
dards. While various hardware-based simulators for Rayleigh
and Ricean fading channels have already been proposed using
field-programmable gate arrays (FPGAs) [3], [4], hardware-
based simulators of Nakagami and Weibull fading channels
have received far less attention.

The Nakagami-m distribution is commonly used [5], [6]
to model moderate to severe fading channels using different
values of the parameter m [7]. The Nakagami fading parameter
m ≥ 0.5 determines the fading severity. When m = 1,
Nakagami-m fading is identical to Rayleigh fading. Values of
m in the intervals [1/2, 1) and (1,∞) correspond to more se-
vere and less severe fading than Rayleigh fading, respectively.
It is well-known that the amplitude of a sum of ξ > 1 squared,
independent Gaussian random variates (RVs), each with zero-
mean and variance σ2

(
i.e., n =

√
c2
1 + c2

2 + · · · + c2
ξ

)
,

follows the Nakagami-m distribution with m = ξ/2 and a
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second moment Ω = 2m σ2 [8]. Each Nakagami-m variate can
thus be found by summing 2m independent Gaussian variates.
However, this method is limited to integer and half-integer
values of m, and it becomes computationally inefficient as m
increases.

Other methods have been proposed in the literature for
generating Nakagami-m fading variates. In [9], uncorrelated
Nakagami-m samples are generated starting with any ran-
dom number generation method. Autocorrelation is introduced
among the random samples by sorting them according to the
rank statistics of additional Rayleigh samples with the desired
autocorrelation. In [10], a Nakagami-m fading signal with
m < 1 is simulated using complex Gaussian processes and
square-root-Beta random processes. In [11]–[13], Nakagami-
m distributed samples are generated from Gamma-distributed
samples with the Gamma-distributed samples having been
correlated using either the Cholesky decomposition of the co-
variance matrix or Sim’s method [14]. In [15]–[17] nonlinear
transformations are proposed for mapping Rayleigh sequences
into Nakagami-m sequences. In [18] and [19], two Nakagami-
m fading simulators based on the sum-of-sinusoids (SOS)
approach are described.

Many of these proposed approaches are not appropriate
for an efficient hardware implementation of a parameter-
izable continuous-time Nakagami-m fading simulator. The
main problems include overly large memory requirements [9],
the block-based nature of the algorithm [9]–[13], the high
computational complexity [9]–[13], [15]–[17], or the need for
high-precision arithmetic [15]–[17]. Even though the SOS-
based approach is more computationally-efficient than the
other proposed schemes [18], [19], the approach does not have
the flexibility to support different values of m and impact
arbitrary time-correlation properties between fading samples.

In this brief, we propose a computationally-efficient tech-
nique for generating random variates from the Nakagami-m
distribution. We utilize non-uniform domain segmentations,
coefficient scaling and piece-wise linear function approxima-
tions to achieve a numerically accurate implementation. We
then propose a compact and high-throughput hardware imple-
mentation of a parameterizable Nakagami-m fading channel
simulator, which can produce arbitrary time-correlation prop-
erties between generated fading samples for various values of
m. We utilize a custom library of fixed-point arithmetic and
logical routines in MEX-C to allow fast bit-true simulation of
the proposed Nakagami-m variate generator. This capability
allows us to empirically minimize the wordlength of the
variables and the size of the memory modules in the datapath
of the variate generator. Due to the similarities between the
Nakagami-m and the Weibull distributions, with only slight
modifications (by reloading on-chip memories), the proposed
approach is readily modified to generate Weibull variates [20],
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[21]. To the best of our knowledge, these are the first proposed
hardware-based Nakagami-m and Weibull variate generators.

The rest of this brief is organized as follows. Section II
briefly reviews the transformation-based method for generating
variates with the Nakagami-m distribution. Then we describe
our new design for the efficient generation of correlated
Rayleigh and Nakagami-m variates. Section III presents the
compact and high-throughput hardware implementation of
the Nakagami-m variate generator. Section IV presents the
hardware implementation costs and gives simulation results.
Section V describes the Weibull variate generator design.
Finally, Section VI makes some concluding remarks.

II. PROPOSED NAKAGAMI-m VARIATE GENERATOR

Transforming a uniformly-distributed random variate u ∈
[0, 1) by an inverse cumulative distribution function (CDF)
function F−1(u) produces a RV having the CDF given by the
function F(·). Consequently, a uniform random variable u can
be transformed into a Nakagami-m random variable nN using
the nonlinear transformation

nN = F−1
N

(
u
)

(1)

where F−1
N is the inverse Nakagami-m CDF [22]. However,

to simulate different fading scenarios, the uniform random
variate u should be generated and imparted with specific
correlation properties among the generated samples. To gen-
erate uniform RVs with a desired autocorrelation function
(ACF), a transformation-based approach is proposed in [16].
In this model, first Rayleigh RVs with the desired ACF are
generated. Note that the envelope of a sequence of zero-mean
unit-variance complex Gaussian variates c = ci + jcq (i.e.,
rR = (c2

i + c2
q)1/2), where ci and cq are independent, is

Rayleigh-distributed. A sequence of Rayleigh random variates
rR can be transformed into samples with a uniform distribution
and the same ACF between samples using the inverse CDF
transformation [23]

uU = FR(rR) = 1 − e
− r2

R
2σ2

c (2)

where FR(·) is the CDF of Rayleigh RVs and σ2
c is the

variance of c. Then the uniform RVs can be transformed into
correlated Nakagami-m RVs using (1).

To generate the baseband complex Nakagami-m fading
variates xX , we use real-valued Nakagami-distributed random
variables ni and nq as follows:

xX = xi + jxq = ni cos
(
θ
)

+ jnq sin
(
θ
)

(3)

where θ = arctan(cq/ci). The key module for generating
Nakagami-m RVs using (3) is the calculation of the inverse
Nakagami-m CDF F−1

N (u). While there is no known closed-
form expression for F−1

N (u), except for the special case of
m = 1, a useful rational polynomial approximation for F−1

N (u)
was proposed in [15], [16] as follows:

F−1
N (u) ≈ η(u) +

a1η(u) + a2η
2(u) + a3η

3(u)
1 + b1η(u) + b2η2(u)

(4)

where

η(u) =

(√
ln

1
1 − u

) 1
m

. (5)

For a given value of m, the five coefficients a1, a2, a3, b1 and
b2 are calculated to minimize the approximation error. Suitable
coefficient values for different values of m are given in [15].

While a polynomial approximation is attractive for the soft-
ware generation of Nakagami-m variates, an efficient hardware
implementation of F−1

N (u) using (4) and (5) is challenging.
Such a design requires several additions and multiplications,
two divisions, a square root, an m−th root, and a natural
logarithm. In addition, generating each complex Nakagami-m
RV using (3) requires two multiplications, one division, and
evaluation of the sin, cos, and arctan functions. In addition
to these computational requirements, our bit-true fixed-point
simulations show that due to the large dynamic range of the
intermediate variables, to attain the required accuracy, F−1

N (u)
needs to be implemented in floating-point arithmetic. However,
floating-point hardware generally requires much more logic
compared to fixed-point computations. While a fixed-point im-
plementation can result in a more compact and efficient design
than one using floating-point arithmetic, careless fixed-point
implementations can suffer from excessive quantization noise.
Moreover, the issues of truncation, rounding and overflow can
render a fixed-point implementation inaccurate.

For an accurate and compact fixed-point Nakagami-m vari-
ate generator, we start by rewriting sin(θ) and cos(θ) as

sin
(
θ
)

=
cq√

c2
i + c2

q

and cos
(
θ
)

=
ci√

c2
i + c2

q

.

From (3), the complex Nakagami variates can be generated as

xX = g
(
r2
R

)× (ci + jcq

)
where g(r2

R) is the transfer function defined as

g(r2
R) =

F−1
N (1 − e

− r2
R

2σ2
c )√

r2
R

. (6)

A high-level block diagram of our proposed Nakagami-
m variate generator appears in Fig. 1. First the Rayleigh
Variate Generator block generates a sequence of zero-mean
unit-variance complex Gaussian random variates c = c i + j cq

and the squared envelope r2
R of the corresponding Rayleigh

process is calculated as r2
R = c2

i + c2
q . Then the transfer func-

tion g(r2
R) is approximated, and the in-phase and quadrature

components of the Nakagami-m variates are found by multi-
plying g(r2

R) by ci and cq, respectively. In the following two
subsections, we describe the details of the design procedure
for the Rayleigh variate generator and our computationally-
efficient approximation of g(r2

R).

A. Time-Correlated Rayleigh Variate Generator

The samples generated by the Rayleigh Variate Generator
must be properly correlated to model the effects of Rayleigh
fading. To generate a sequence of Rayleigh fading samples
with a suitable ACF between generated samples of ci (as
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Rayleigh

Variate

Generator

Fig. 1. Block diagram of the complex Nakagami-m variate generator.

well as cq), statistically independent Gaussian streams of ci

and cq can be passed through a spectrum shaping filter (SSF)
that has a magnitude response equal to the square root of
the magnitude of the desired spectrum [22]. The SSF allows
us to parameterize the time-correlation between the generated
Rayleigh variates to model different fading scenarios.

The SSF can be designed using a finite impulse response
(FIR) or an infinite impulse response (IIR) filter. Since IIR
filters are typically much smaller than their FIR counterparts
for the same filter specifications [24], we approximate the
desired magnitude response of the SSF with an IIR filter of
order 2K [25]. The magnitude response of the SSF can be
written as the magnitude response of K ≥ 1 cascaded second-
order canonic sections (biquads) as follows

H(ejω) =
K∏

k=1

{
λk × 1 + b1,k e−jω + b2,k e−j2ω

1 + a1,k e−jω + a2,k e−j2ω

}
(7)

where b1,k, b2,k, a1,k and a2,k denote the coefficients and λk

denotes the real-valued scaling factor of the k-th biquad.
Without loss of generality, we design the SSF for an omni-

directional receiving antenna and assume two-dimensional
isotropic scattering. The ACF associated with either ci or cq

is expressed as Rii(τ) = Rqq(τ) = Jo(2πfDτ) [26], where τ
denotes the time lag, fD is the maximum Doppler frequency,
and Jo(·) is the zeroth-order Bessel function of the first kind
[27]. The cross-correlation function (CCF) between c i and cq

is Riq(τ) = Rqi(τ) = 0 (i.e., ci and cq are independent
stochastic processes). To generate a sequence of Rayleigh
variates with the above ACF, a stream of independent Gaussian
samples can be passed through a SSF that has a magnitude
response equal to the square root of the magnitude of the
power spectral density (PSD) function [28]:

Sc(f) =

{
1

π
√

f2
D−f2

if |f | < fD,

0 otherwise.
(8)

Given the desired frequency response S
1/2
c (f), we can design

the SSF using the MATLAB function iirlpnorm [29],
which calculates the optimal filter coefficients and scaling
factors by minimizing the p-norm. Then the filter coefficients
and scaling factors can be quantized with appropriate fixed-
point representations while keeping the SSF stable.

It is important to note that for a typical wireless communica-
tion scenario, the Doppler frequency fD is significantly lower
than the signal sample rate Fs. Since the channel changes
only slowly compared to the sample rate, we can design the

Rayleigh fading simulator (and subsequently, the Nakagami-
m fading simulator) at a much lower sample rate with no
significant loss in accuracy. This observation allows us to
utilize time-multiplexed datapaths, which share functional and
storage resources for generating the Nakagami-m variates. The
resulting low-rate fading signal can then be interpolated to
achieve the desired output sample rate.

We design the SSF at a sampling frequency F1, where
4fD < F1 ≤ 8fD. Choosing F1 in this range satisfies
the minimum Nyquist rate while keeping the computational
complexity low [30]. The SSF output is then up-sampled I1

times and passed to an elliptic interpolation lowpass filter
(EILP), which generates F2 = I1×F1 samples per second. The
samples are further up-sampled and interpolated using a linear
interpolator to obtain the desired output sample rate Fs, as will
be explained in the next section. Fig. 2 shows both the desired
reference with 60 dB target attenuation in the stopband and
the achieved frequency responses of the designed fixed-point
SSF with four cascaded biquads. As this figure shows, the
designed filter accurately produces the desired response within
the passband. In the stopband, the designed filter provides
more than 55 dB of attenuation.
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Fig. 2. Frequency response of the PSD in (8) and the designed SSF with
fD/F1 = 0.125.

B. An Efficient Approximation of g(r2
R)

Accurate approximation of g(r2
R) is crucial for the faithful

simulation of Nakagami-m fading channels. Fig. 3 plots g(r 2
R)

as a function of r2
R ∈ [2−15, 25) for six different values of

m on a log-log scale. In this figure and in the rest of this
section we assume that the average fading power is Ω = 1.
The simulation results in Fig. 3 show that for m ∈ [0.5, 25] and
r2
R ∈ [2−15, 25), g(r2

R) varies over four orders of magnitude.
Moreover, g(r2

R) tends to change faster for small values of
r2
R. For σ2

c = 1, since Pr(r2
R > 25) is less than 1.125×10−7,

and Pr(r2
R < 2−15) is less than 1.526 × 10−5, we focus on

evaluating g(r2
R) over the interval [2−15, 25) without signifi-

cantly affecting the output statistics (as we will show later).
Our fixed-point simulation results show that for a sufficiently
accurate representation of the transfer function g(r 2

R), for the
lower part of the full domain r2

R ∈ [2−15, 25) we require a
minimum resolution of 2−15. Such a fine resolution, however,
is not required for the upper part of this domain since g(r 2

R)
changes slowly in this region. On the other hand, as shown
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in Fig. 3, since g(r2
R) has a wide range of 2−7 to 27, at least

14 bits are required for the fixed-point representation of this
function. One could precompute and store values of g(r 2

R) in
a look-up table (LUT). The problem with this approach is that
the required size of the LUT for a practical range would be
prohibitively large (i.e., 25+15 × 14 = 14 megabits).
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Fig. 3. Log-log plot of g(r2R) for Ω = 1 and five different values of m.

An alternative and much more efficient solution is to cal-
culate g(r2

R) using variable domain segmentation with linear
approximations over each segment. In this approach, the
domain [0, 25] is divided into a number of small segments
and the value of g(r2

R) over each segment is approximated
using standard linear regression [31]. However, note that g(r 2

R)
changes faster for the smaller values of r2

R. Therefore, more
accurate approximations (i.e., smaller segments) are required
for the lower part of the domain. On the other hand, since
g(r2

R) changes slowly for larger values of r2
R, larger segments

can be used in the upper part of the domain. Thus for an
accurate approximation of g(r2

R) that also reduces the size of
the LUT, we propose a hybrid logarithmic-linear segmentation
[3], [32]. As shown in Fig. 4, the range (0, 2α] is divided into l
logarithmic (i.e., power of 2) segments. Each of these segments
is further divided into 2ζ uniform sub-segments. This segmen-
tation is particularly convenient for hardware implementation
as the logarithmic segment for each sample can be determined
using a leading-1 detector circuit. Moreover, the next ζ bits
after the leading 1s can be used to address the linear sub-
segment in the memory. The remaining bits can be used as
the argument to the linear function (i.e., δ − δ0).

Based on empirical evaluations of the resulting fixed-point
accuracy, we divided the domain [2−15, 25] into 15 logarith-
mic segments. Each of the logarithmic segments is further
divided into 64 uniform sub-segments. The domain [0, 2−15)
is also divided into 64 uniform segments, which makes the
total number of segments (1 + 15) × 64 = 1024. Then
g(r2

R) over each segment δ ∈ [δ0, δ1) is approximated as
ĝ(δ) ≈ aδ0(δ− δ0)+ bδ0 . The number of bits required to store
{a} and {b} can be further reduced by approximating ĝ(δ) as
ĝ(δ) ≈ 2fδ0 × [âδ0(δ − δ0) + b̂δ0 ], where âδ0 = 2−fδ0 × aδ0

and b̂δ0 = 2−fδ0 × bδ0 . Our bit-true simulations, as shown
in Section IV, confirm that if the values of {â}, { b̂} are
represented in s18.17 format, i.e., signed 2’s-complement 18-
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0

0

Fig. 4. Hybrid domain segmentation for the transfer function g(r2R).

bit fixed-point values with 17-bit fractions representing the
signed domain [−0.5, 0.5), the approximation error of g(r 2

R)
is relatively low and the statistics of generated samples closely
follow the reference statistics. The choice of 1024 segments
and a 18-bit representation for {â}, { b̂} allows us to store the
values of coefficients for each segment in an 18-Kb on-chip
read-only memory. The values of f were represented in s5.0
format (i.e., signed integers within [−16, 15]).

III. EFFICIENT HARDWARE IMPLEMENTATION OF

NAKAGAMI-m VARIATE GENERATOR

Fig. 5 shows the datapath of our proposed Nakagami-m
variate generator. This datapath supports different values of the
Nakagami parameter m with no impact on the computational
complexity. The datapath details are described in the following
three sub-sections.

A. Rayleigh Fading Variate Generator Datapath

To generate correlated Rayleigh fading samples, we first
generate zero-mean unit-variance independent Gaussian vari-
ates ci and cq using the compact and high-quality Gaussian
variate generator from [32]. The generated samples, c i and
cq, which are in s16.11 format, are passed through the SSF
designed in Section II.A. For a compact spectrum shaping IIR
filter implementation, we use an optimized fixed-point biquad
processor with the architecture shown in Fig. 6. This processor
is capable of implementing eight time-multiplexed IIR filters,
where the maximum order of each IIR filter is 16 (i.e., eight
biquads per filter). The main datapath element is a multiply-
accumulator based on a 36 × 32 multiplier that multiplies
the in-phase and quadrature data components by real-valued
coefficients. Memory modules RAM a1, a2, b1, b2 and λ are
implemented using distributed memories of depth 64 and they
store 32-bit SSF real-valued coefficients and scaling factors
in s32.29 format. The memories RAM m1, m2 and d are
implemented using distributed memories of depth 64× 2 (for
both the in-phase and the quadrature components) in s36.24
format. Memories RAM m1 and m2 store the values of two
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Fig. 5. Datapath of the transformation-based Nakagami-m variate generator.

internal registers for each biquad while RAM d is used to store
the output value of each biquad. The Control Unit sequences
the operation of a cascade of biquad processors. To control the
dataflow through the biquad processor, two flags are assigned
to every thread of cascaded biquads (i.e., for each individual
filter labeled in-i and out-j in Fig. 6). For example, for the i-
th thread (filter calculation), if in-i is high, then input data
is ready to be read. Also, if out-i is high, then data can
be written to the next cascaded biquad. For each thread, the
biquad processor keeps re-evaluating the biquads until either
of the input or output flags is de-asserted. To prevent the
overwriting of unprocessed data, the biquads in each thread
are scheduled to be executed from the last biquad to the first.
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Fig. 6. Architecture of the biquad processor.

B. Nakagami-m Fading Variate Generator Datapath

After the biquad processor generates variates c i and cq with
the desired ACF, they are passed through modules U0, U1 and
U2 in Fig. 5 to generate r2

R. Then the calculated r2
R is passed to

the Leading-1 Detector and Barrel-Shifter U3 to find the address
addr of the current hybrid segment, the uniform segment
number therein, and the argument δ − δ0. Current segment
address addr is then used to read the coefficient values {â},
{b̂}, and scaling factors {f} from the corresponding read-only
memories (ROMs). Note that different sets of coefficients {â},
{b̂}, and {f} can be readily computed off-chip and loaded

onto the corresponding memory blocks for different values of
m. Then the value of g(r2

R) is approximated by arithmetic
blocks U7, U8 and U9 as ĝ(r2

R) ≈ 2f × [â(δ − δ0) + b̂].
The quadrature components of the fading samples are then
calculated as xi = ci × ĝ(r2

R) and xq = cq × ĝ(r2
R) in U10

and U11, respectively.

C. Interpolation Datapath

In the last step, fading variates generated at F̂s samples per
second are oversampled and interpolated I times to provide
samples at the target sample rate Fs = I × F̂s. To simplify
the SSF hardware, we exploit power-of-2 interpolation factors.
The linear interpolator requires the discrete difference between
two consequent low-frequency samples x[mI] and x[(m+1)I]
to generate the interpolated fading samples x[mI + i], where
i = 0, 1, · · · , I − 1, as follows:

x[mI + i] =

(
x[(m + 1)I] − x[mI]

)
i

I
+ x[mI]. (9)

To avoid multiplication and division, we accumulate a running
sum and choose I to be a power of two. Thus

x[mI + i] =
i∑

j=0

x[(m + 1)I] − x[mI]
I

+ x[mI] (10)

and the interpolator can be implemented simply as shown in
Fig. 7. The interpolator contains one 24-bit accumulator and
one register that holds the value of the input signal for an
interval of I samples.

_

Parameterizable

bit-select
x[(m+1)I]

Reg.
x[mI]

x[mI + 1]

Fig. 7. Interpolator structure.

IV. IMPLEMENTATION AND SIMULATION RESULTS

We implemented the new Nakagami-m fading variate gen-
erator in Fig. 5 using device-independent Verilog modules
on a Xilinx Virtex-5 5VSX240TFF1738-2 FPGA [33]. For a
simulation trial, the parameter values along with the associated
contents of memory blocks, are loaded into dedicated registers
and block memories. Table I summarizes the implementation
costs of the key modules.

TABLE I
HARDWARE COSTS OF THE MAJOR MODULES

Design GNG Biquad Interpolator Overall
Parameters Processor System
# of slices 145 312 62 631
# of DSP48Es 2 6 − 13
# of BRAMs 1 − − 3
Clock freq. (MHz) 367 120 373 120
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The Nakagami-m fading channel simulator requires only
1.6% of the configurable slices, 1.2% of the DSP48E modules,
three of the 36 Kbit on-chip block memories (BRAMs), while
operating at 120 MHz. Note that the Rayleigh-to-Nakagami
variate transformation datapath in Fig. 5 requires 100 config-
urable slices, five DSP48E modules, and two block memories.
Note also that when this datapath is implemented with two
clock sources, say one for the fading sample generator and one
for the interpolator, the maximum output rate is determined by
the clock frequency of the interpolator. With the two-clock
configuration, the sample generation rate can be increased
up to 373 million complex Nakagami-m fading samples per
second using the same FPGA.

To verify the accuracy of our simulator, we performed dif-
ferent simulations using the fixed-point and bit-true models of
our proposed hardware simulator and compared the statistical
properties of the generated samples against the theoretical ref-
erences. Fig. 8 shows the relative approximation error of g(r r

R)
(i.e., eg(r2

R) = |1− ĝ(r2
R)/g(r2

R)|) for m = 10. The relatively
small approximation error shows that the variable-resolution
domain segmentation and piece-wise linear approximation can
accurately produce the ideal transfer function g(r 2

R). Note
that the relative approximation error increases for the largest
values of r2

R. Note also that the probability of large values
of r2

R is small and that g(r2
R) goes to zero for such values.

However, as we will show, this approximation error does not
have a significant impact on the distribution of the generated
Nakagami-m samples. Note that the case of m = 1 (i.e.,
Rayleigh fading) has the minimum approximation error error
as no envelope transformation is required. As the Nakagami
fading parameter m increasingly differs from unity, the greater
the approximation error.
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Fig. 8. Relative approximation error of transfer function g(r2R) for m = 10.

To generate the Nakagami-m fading samples, we utilize the
spectrum-shaping PSD function in (8). As an example we will
assume a Doppler frequency fD = 100 Hz and a sample rate
Fs = 10 KHz. Fig. 9 plots the PDF of 10 million generated
Nakagami-m samples for eight different values of m. The
theoretical functions given by

fN(n) =
2mmn2m−1

N

Γ(m)Ωm
exp(−m

Ω
n2

N ), nN ≥ 0 (11)

are plotted as well for reference, where Γ(·) is the gamma
function and Ω is the average fading power of the sequence

of fading variates [7]. This figure shows that the PDF of the
generated samples closely matches the reference Nakagami-
m PDF for the eight m values, which confirms the statis-
tical accuracy of the generated samples. Fig. 10 compares
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Fig. 9. Comparison between the reference Nakagami-m PDF and the
measured PDF of generated samples for eight different values of m.

the autocorrelation of the generated Nakagami-m samples,
for six different values of m, and the reference function.
This figure also shows a close match between the measured
autocorrelation and the reference values. The autocorrelation
of the amplitude of the envelope is also widely used to assess
the quality of a fading channel simulator. The normalized ACF
of the envelope of the generated Nakagami-m samples and the
reference values given by [34, eq. 26]

R(τ)ACE = 2F1

(− 1
2 ,− 1

2 ; m, |Jo(2πfDτ)|2)[
Γ(m)

Γ(m+1/2)

]2 (
m
Ω

) (12)

are compared in Fig. 11, where 2F1 (·, ·; ·, ·) denotes the Gaus-
sian hypergeometric function [27]. Fig. 11 confirms a close
match between the generated envelope autocorrelation and the
reference functions from equation (12), which further verifies
the accuracy of our implementation. Moreover, Fig. 12 shows
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Fig. 10. Comparison between the reference autocorrelation function and that
of the generated samples for six different values of m.

the normalized level crossing rate (LCR) of the amplitude of
the generated complex Nakagami fading samples. The LCR is
the rate at which the envelope crosses a specified level with
positive slope. The LCR provides important information con-
cerning the statistics of burst errors in wireless communication
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Fig. 11. The reference normalized envelope autocorrelation function and that
of the generated samples for six different values of m.

systems. In Fig. 12 the theoretical and simulated LCR plots
are normalized to fDTs. The LCR of the Nakagami fading
envelope is given by [35]

L|R|(λ) =
√

2πfDTs × mm−1/2λ2m−1

Γ(m)
× exp(−mλ2). (13)

Fig. 12 confirms agreement between the theoretical and fixed-
point simulation results for two different values of m.
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Fig. 12. Comparison between the reference Nakagami-m LCR and the
measured LCR of generated samples for two different values of m.

V. WEIBULL FADING VARIATE GENERATOR

Our Nakagami-m fading simulator can be readily modified
to simulate Weibull fading channels. The CDF of the Weibull
distribution can be written as [21]

FW (r) = 1 − exp
{
−
( r

λ

)β
}

, r ≥ 0 (14)

where λ > 0 is the scale parameter of the distribution and β
is the shape parameter that controls the fading severity. The
transformation function for converting Rayleigh samples into
Weibull samples can be written as

gW

(
r2
R

)
=

F−1
W

(
1 − e

− r2
R

2σ2
c

)
√

r2
R

=
λ√
r2
R

×
(

r2
R

2σ2
c

) 1
β

. (15)

The architecture of the Weibull variate generator is similar to
that of Nakagami-m, where the transfer function gW (r2

R) is

used to generate Weibull samples from Rayleigh-distributed
random variates instead of g(r2

R). Algorithm 1 gives the steps
of the Weibull variate generator. Note that the same datapath
in Fig. 5 can be used to generate Weibull fading samples;
however, the contents of ROM a, ROM b and ROM f must be
replaced with the appropriate values obtained from a suitable
segmentation and linear approximation of gW

(
r2
R

)
.

Algorithm 1 Weibull variate generator procedure
Step 1: Polynomial approximation of gW

(
r2
R

)
using a hybrid logarithmic-

uniform segmentation.
1. The domain [0, 25] is segmented into 16 logarithmic segments;
2. Divide each of the logarithmic segments into 64 uniform segments;
3. Approximate gW

(
r2
R

)
over each segment δ ∈ [δ0, δ1) as

ĝW (δ) ≈ aδ0 (δ − δ0) + bδ0 ;
4. Reduce the number of bits required to store {a} and {b}
by approximating ĝW (δ) as ĝW (δ) ≈ 2fδ0 × [âδ0 (δ − δ0) + b̂δ0 ],
where âδ0 = 2−fδ0 × aδ0 and b̂δ0 = 2−fδ0 × bδ0 ;
5. Store the values of {â}, {̂b} and {f} for each segment in a ROM;

Step 2: Generate a correlated Rayleigh fading process c as described in
Section II.A.
Step 3: Calculate the squared envelope r2R = c2i + c2q .
Step 4: Read the values of {â}, {̂b} and {f} from three ROMs.
Step 5: Calculate ĝW (r2

R) ≈ 2f × [â(δ − δ0) + b̂].
Step 6: Calculate the quadrature components of the Weibull samples

as wi = ci × ĝW (r2
R) and wq = cq × ĝW (r2

R).
Step 7: Oversample and interpolate the generated fading samples I times.

To verify the statistical accuracy of our hardware model,
we generated 10 million Weibull samples with our variate
generator. Fig. 13 compares the PDF of the generated Weibull
samples with the reference PDF given by

fW (r) =
(

β

λ

)( r

λ

)β−1

× exp
{
−
( r

λ

)β
}

, r ≥ 0 (16)

for four different values of β [22]. Similar to the Nakagami-m
variate generator, we used 1024 segments and represented the
values of {â}, {b̂} and {f} for each segment in s18.17, s18.17
and s5.0 fixed-point formats, respectively. In this simulation,
the average power of the Weibull samples was set to Ω =
1. This figure confirms a close match between the generated
PDFs and the reference PDF.
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Fig. 13. Comparison between the reference Weibull PDF and the PDF of
the generated samples for four different values of β.

VI. CONCLUSIONS

A compact and high-throughput hardware-based variate
generator for both the Nakagami-m and Weibull distribu-
tions was proposed. The new simulator exploits an efficient
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implementation of two consecutive nonlinear transformations
that uses hybrid domain segmentation and piece-wise linear
approximation. We also proposed a compact processor for the
efficient implementation of an IIR filter that is required to
generate Rayleigh variates with independently-defined auto-
correlation properties among the generated samples. To reduce
the hardware complexity, the Nakagami-m variate generator
operates at a lower sampling rate than the target sampling
frequency. A parameterizable linear interpolator up-samples
and filters the generated Nakagami-m (or Weibull) variates
to achieve the target output rate. Using a custom library of
fixed-point arithmetic and logical routines, the new simulators
were then further optimized by minimizing the wordlength
of the variables and the size of the on-chip memories. To
the best of our knowledge, these are the first hardware-based
Nakagami-m and Weibull variate generators. The accuracy of
the simulator was verified by generating fixed-point fading
samples and comparing their important statistical properties
with those of the two ideal distributions.
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