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Abstract—The accurate simulation of wireless channels is im-
portant since it permits the realistic and repeatable performance
measurement of wireless systems. A new technique is proposed
for simulating Rayleigh fading channels with isotropic or non-
isotropic scattering and with arbitrary temporal correlation.
Fading samples are generated by passing Gaussian samples
through a spectrum shaping filter. A new iterative algorithm
is then presented for designing stable complex infinite impulse
response (IIR) filters with quantized coefficients. The algorithm
utilizes a least-squares cost function augmented with a barrier
function to ensure filter stability and to reduce quantization
noise. The performance of the proposed filter design algorithm
is verified with 18-bit fixed-point simulations of different fading
channel scenarios including isotropic and nonisotropic scattering
and the IEEE 802.11n Model F fading spectrum.

I. MOTIVATION AND BACKGROUND

The accurate design and verification of wireless communica-
tion systems needs faithful modeling and accurate simulation
of realistic radio propagation channels. Prior to the availability
of standardized channel models, wireless products needed to
be verified using extensive and expensive field testing. A far
less costly approach is to model the behavior of radio channels
on a fading channel simulator. Two major techniques have
been widely used for simulating Rayleigh fading channels.
In the first approach, the so-called sum-of-sinusoids (SOS)
model, the Rayleigh fading process is modeled as the super-
position of a sufficiently large number of sinusoidal waves.
This approach was originally proposed by Clarke [1] and later
simplified by Jakes [2]. Over the past four decades several
modified SOS-based models have been proposed (e.g., [3],
[4]). This technique is widely used in the COST 259, COST
273, and IST-Winner fading channel models [5], [6].

The second well-known approach for fading channel sim-
ulation is to first generate a complex, zero-mean, Gaussian
random process with independent samples. Then the fading
process is obtained by passing the variates through a suitable
spectrum-shaping filter (SSF). This technique is used to simu-
late the TGn fading channel models proposed for the 802.11n
wireless standard [7]. The filtering process can be carried
out in the time or frequency domains with digital or analog
filters. In particular, one can generate the fading variates by
multiplying the Gaussian samples in the frequency domain
with suitable coefficients and then taking the inverse Fourier

transform (IDFT) [8]. It has been shown that generating fading
samples with a single Fast Fourier Transform (FFT) operation
requires a relatively large memory and, hence, results in an in-
efficient implementation [9]. An autoregressive (AR) modeling
approach has also been proposed for generating fading pro-
cesses by passing the white noise samples through an all-pole
infinite impulse response filter (IIR) [9]. To produce samples
with accurate statistics, the AR model needs a large filter order,
which greatly increases the number of required multiplications.
Also, implementation of the AR fading simulator requires
highly accurate variables, which makes it unappealing for
compact fixed-point implementations.

While the above techniques have been used to simulate
isotropic scattering channels, they might not be the best candi-
dates for simulating nonisotropic Rayleigh fading channels. In
nonisotropic fading, the power spectral density (PSD) of the
fading samples is asymmetric, implying an SSF with complex-
valued coefficients. In conventional practice, filters are de-
signed with standard tools (e.g., fdatool or iirlpnorm
in MATLAB). While this approach is applicable to SSF
design for isotropic fading channels, it is not appropriate for
designing the stable complex filters required for shaping the
spectrum of nonisotropic channels. Similarly, the IIR filter
design procedure in [10] can be only applied to filters with
real coefficients, and hence, it is not suitable for designing the
complex filters required in nonisotropic channels.

Our previous work focused on designing fading channel
filters for the isotropic scenario (when the angle of arrival of
the received multipath signals is uniformly distributed and we
assume the use of an omni-directional antenna at the receiver)
[11]–[15]. This work considers the more general scenario of
non-isotropic scattering due to real-world antenna directivity
and possible selective attenuation along some propagation
directions. In this article we address the problem of designing
IIR filters for the accurate simulation of nonisotropic Rayleigh
fading channels with arbitrary time correlation properties.
Several algorithms exist for designing stable IIR filters with
real coefficients [16]–[20]. However, designing stable IIR
filters with complex coefficients has been less well studied.
The main contributions of this work are as follows:
• A new algorithm for designing general stable IIR filters
with complex and real coefficients is proposed. The maximum



radius of the poles and/or zeros is limited to ensure numerical
stability. The least-squares cost function is formulated in polar
coordinates and augmented with a barrier function that keeps
the poles (and potentially the zeros) within the unit circle.
This method poses a sufficient (but not necessary) stability
condition on the filter.
• To minimize the computational requirements, filters are
quantized for fixed-point implementation and, hence, variables
are implemented with the minimum possible fixed-point word-
length. Since reducing the word-length can greatly impact the
response (and potentially also the stability) of the designed
filter, our proposed filter design technique searches for the best
filters with fixed-point coefficients that meet our word-length
budget.
• Several examples are provided for designing fixed-point
fading channel simulators with 18-bit IIR filters and 16-bit co-
efficients. Both isotropic and nonisotropic fading are simulated
and the fixed-point results show a close match between several
generated statistical properties and the theoretical references.

The rest of this article is organized as follows. Section
II reviews the nonisotropic channel model and related work
on complex filter design. The new filter design technique
is presented in Section III. We used our proposed complex
filter design algorithm for the simulation of two different
fading channel scenarios. Numerical results of these simulators
are presented in Section IV. Finally, Section V makes some
concluding remarks.

II. FADING CHANNEL CHARACTERISTICS AND

THE RELATED WORK ON COMPLEX FILTER DESIGN

In wireless communication systems, the received signal
strength varies significantly due to destructive and construc-
tive interference resulting from multipath propagation [21].
Isotropic scattering refers to the case in which the incident di-
rection of the received multipath signals, or the angle of arrival
(AOA), is uniformly distributed. Assuming two-dimensional
isotropic scattering with an omni-directional antenna at the re-
ceiver [2], the PSD functions associated with both the in-phase
or quadrature components of a complex fading signal have
the well-known Jakes’ U-shaped band-limited form [22] with
independent in-phase and quadrature samples. However, such
assumptions have been challenged [23] and experimentally
demonstrated [24]–[26] to be inaccurate due to the selective
attenuation of some propagation directions as well as antenna
directivity [27]. Such effects produce a nonuniform probability
density function (pdf) for the AOA at the receiver. The pdf of
the AOA has a great impact on the second-order statistics of
the fading process including the correlation functions, the level
crossing rate (LCR) and the average fade duration (AFD) [26].

Several nonuniform pdfs have been proposed in the liter-
ature for the angle of arrival including geometrically-based
AOA pdfs [28], the Gaussian pdf [29], the quadratic pdf [30],
the Laplace pdf [24], the cosine pdf [31], and the von Mises
pdf [32]. The von Mises pdf, which includes the uniform AOA
distribution as a special case, is supported experimentally with
empirical measurements of narrowband fading channels [32].

The authors in [32] argue that the von Mises pdf is preferable
because it can approximate other nonuniform pdfs and it is
mathematically convenient for analysis.

In this article, we assume narrowband fading in which the
complex envelope of the fading process is given by

c(t) = cI(t) + j cQ(t)

= lim
N→∞

1√
N

N∑
n=1

αne
j
(
2πfD cos(ψn)+ϕn

)
,

(1)

where N is the number of sinusoids, fD is the Doppler fre-
quency, the {ψn} are independent and identically distributed
(i.i.d.) angles of arrival of the incoming wave at the receiver
antenna with distribution pΨ(ψ), the {ϕn} are i.i.d. phases
with uniform distribution over [−π, π), and the {αn} are
deterministic complex constants that are normalized to satisfy∑N
n=1 |αn|2 = N . When the scattering encountered in the

propagation environment is nonisotropic, the PSD function
associated with c(t) is given by [32]

Sc(f) =
e
κ cos(ψ̃) f

fD cosh
(
κ sin(ψ̃)

√
1 − ( f

fD
)2

)
πI0(κ)

√
1 − ( f

fD
)2

(2)

where κ ≥ 0 controls the beamwidth, ψ̃ denotes the average
AOA of the scattered component, and Im(·) is the m-th
order modified Bessel function of the first kind. To obtain
(2) it is assumed that the AOA of the scattered component is
distributed with the von Mises/Tikhonov distribution [33] as
follows

pΨ(ψ) =
exp

[
κ cos(ψ − ψ̃)

]
2πI0(κ)

, ψ ∈ [−π, π). (3)

Note that when the beamwidth parameter κ = 0, the AOA has
a uniform distribution over [−π, π) and (2) reduces to Jakes’
U-shaped symmetric spectrum Sc(f) = (π

√
1 − (f/fD)2)−1.

The autocorrelation function (ACF) of c(t) is obtained by
taking the inverse Fourier transform of (2) as follows [32]

Rc(τ) =
I0

(√
κ2 − 4π2f2

Dτ
2 + 4jκ cos(ψ̃)πfDτ

)
I0(κ)

. (4)

Two other important statistical properties of c(t) are the
LCR and AFD. These properties can greatly affect the design
and analysis of the wireless systems, not only at the physical
layer, but also at the link and network layers [34]. The LCR
of the envelope |c(t)| is defined as the expected number of
envelope crossings per second at a given level R with positive
slope. It can be shown that the LCR of c(t) is [35]

L(ρ) =

√
I2
0 (κ) − I2

1 (κ) + cos(2ψ̃)[I0(κ)I2(κ) − I2
1 (κ)]

I0(κ)
×

√
2πfDρ exp(−ρ2),

(5)

where for beamwidth κ = 0 (isotropic scattering), (5) reduces
to the Rayleigh LCR function L(ρ) =

√
2πfDρ exp(−ρ2).



AFD determines the average length of error bursts. For the
case where the AOA is modeled by the von Mises pdf, the
AFD is [35]

T (ρ) =
I0(κ)√

I2
0 (κ) − I2

1 (κ) + cos(2ψ̃)[I0(κ)I2(κ) − I2
1 (κ)]

×

exp(ρ2) − 1√
2πfDρ

.

(6)

For isotropic scattering (κ = 0), the AFD reduces to T (ρ) =
(exp(ρ2) − 1)/(

√
2πfDρ).

To mimic the behavior of a realistic wireless channel, a
fading channel simulator should be able for generating a
sequence of path gains {c(t)} with statistics that accurately
match the ideal reference models. An efficient technique to
generate a sequence {c(t)} with the desired statistics is to pass
a stream of independent Gaussian samples through a suitably
designed SSF. For the case of nonisotropic scattering, the SSF
must have a magnitude response equal to the square root of
the magnitude of (2). In this case, Sc(f) is asymmetric and the
SSF can be implemented using a complex IIR filter. While IIR
filters have a reduced computational complexity and greater
stopband attenuation compared to FIR filters of similar size, it
is challenging to implement stable and accurate complex IIR
filters in fixed-point arithmetic.

Various methods using nonlinear optimization [36]–[38],
linear programming [39], and semidefinite programming [40]
have been suggested for designing digital IIR filters in the
complex Chebyshev sense. Least-squares methods have been
applied extensively to design FIR and IIR filters [41]–[45].
However, ensuring the stability of a complex IIR filter whose
coefficients are obtained by least-squares methods is not
straightforward. Many authors appear to have neglected this
topic and have concentrated instead on finding close approx-
imations to the desired frequency response. When designing
real filters, for which only the magnitude and not the phase
response is important, all unstable factors in the filter transfer
function 1/(1−skejφke−jω) can be replaced with their stable
counterparts 1/(e−jω − ske

j−φk) with identical magnitude
response, where skejφk is the k-th pole. If, however, the phase
response is also important, such as when the filter coefficients
are complex, this method cannot be applied.

When optimization techniques are used for designing a
filter, various approaches exist to ensure stabilization. One
method proposed in [36] is to start the optimization from
a stable point and then control the step size so that the
solution never leaves the stable region. However, this method
is computationally expensive and is not easy to implement
with traditional optimization procedures. A second method is
to make sure that the target response is minimum-phase [16] or
that it has a “large-enough” group delay [17]. These conditions
cannot be met in many situations since the flexibility to
modify the target frequency response is restricted. In a third
method, explicit constraints are imposed on the coefficients
of the denominator of the transfer function [18], [19]. This

technique, however, has some limitations and affects the filter
quality [20]. Finally, in a fourth method, the least squares
cost function is modified so that the minimum always falls
in the stable region [20]. In [20] the authors suggest adding
a barrier function to the original cost function to avoid filter
instability. To design the barrier function, first they form an
all-pole proxy transfer function consisting of all of the filter
poles. The barrier function is basically the sum of the squared
amplitude of a section of the impulse response of the proxy
transfer function. If the filter is unstable, the tail will have
(large) non-zero values.

III. SPECTRUM SHAPING FILTER DESIGN

To design a compact IIR spectrum shaping filter, the filter
is represented as a product of first-order sections (FOSs)

H(e−jω) = A

Γ∏
k=1

1 − rke
j(θk−ω)

1 − skej(φk−ω)
, (7)

where A is a positive scaling factor, rkejθk and ske
jφk are

the k-th complex zero and pole, respectively, and Γ is the
filter order, i.e., the number of FOSs. When the beamwidth
parameter is κ = 0, the poles and zeros of (7) appear as
complex conjugate pairs and thus the shaping filter can be
implemented using Γ/2 canonic second-order sections (SOSs),
also known as biquads.

In practical applications, since fD is much smaller than the
sample rate Fs, the designed SSF would have an extremely
narrow passband and a very sharp cut-off. We can reduce the
complexity and increase the accuracy of the SSF by designing
it instead at a lower sampling frequency. For an efficient
implementation we propose to design the SSF at a sampling
frequency F1, where 4fD < F1 ≤ 8fD. At a later stage
the generated samples are up-sampled to reach the required
sampling rate Fs. To design the SSF, we first define 2 ×M
frequency points in the interval ui ∈ [−0.5, 0.5] and then try
to fit the frequency response of SSF to the sampled desired
response as follows

ydi =⎧⎪⎪⎨
⎪⎪⎩
e
κ cos(ψ̃)

F1ui
2fD

√
cosh

(
κ sin(ψ̃)

√
1−(

F1ui
fD

)2
)

√
πI0(κ)

√
1−(

F1ui
fD

)2
, if |ui| < fD

F1

ε, otherwise

(8)

where ε > 0 is the attenuation in the stopband. We pick
the frequency samples at ui = (2i + 1 − 2M)/(4M), i =
0, · · · , 2M − 1 to have appropriate samples at the corner fre-
quencies. Similar to the work in [46], we express H(e−jω) =
AF (x; e−jω), where F (x; e−jω) represents the product of
FOSs in (7) and the column vector x of length 4Γ containing
rk, sk, θk and φk. Next, to find the filter parameters we define
the cost function

q(A,x) =
2M−1∑
i=0

vi
(
log(A|F (x; e−jω)|) − log(ydi )

)2

+B(ϑ; �;x), (9)



where the weight vector v = [v1, v2, · · · , v2M ]T is used
to allow us to emphasize the error minimization for certain
frequency bands. Since the target phase response of the
designed filter does not have any impact on the correlation
properties, only the magnitude of the filter response needs to
be considered in (9). Note that the sum of squared errors on a
logarithmic scale is augmented by the parametric barrier func-
tion B(ϑ; �;x). The barrier function B(ϑ; �;x) is included to
keep the poles and zeros within the unit circle (i.e., minimum
phase) and is defined as

B(ϑ; �;x) =
4Γ∑
k=1

b(ϑ; �;xk), (10)

where

b(ϑ; �; τ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |τ | ≤ � or k > 2Γ,

ϑ
(

|τ |−	
1−	

)2

if � < |τ | ≤ 1 and k ≤ 2Γ,

2ϑ
1−	 |τ | − ϑ

(
1+	
1−	

)
if |τ | > 1 and k ≤ 2Γ.

(11)
In (10), ϑ determines how fast the barrier function grows
outside of the unit circle and the parameter � determines an
outer boundary for the poles and zeros. The barrier function
(10) is especially useful when designing filters for fixed-point
implementation since it can be parameterized to keep the poles
and zeros at any desired safe distance from the unit circle.
Controlling the maximum absolute value of the filter poles
limits the quantization effects to an acceptable level.

The coefficients of the SSF are found iteratively. At each
iteration, first the optimum scaling factor Ao is calculated as

Ao =
2M−1∏
i=0

(
ydi

|F (x; e−j2πui )|
) vi∑2M−1

i=0 vi

. (12)

This expression for Ao is found by differentiating (9) with
respect to A and then setting the resulting expression to
zero. Algorithm 1 summarizes the steps for our proposed
iterative filter design. Here we utilized the Ellipsoid algorithm
[47] for its simplicity, however, other techniques can be used
for optimization. The inputs to Algorithm 1 include desired

Algorithm 1 Iterative calculation of the filter coefficients

Require: �; ϑ;Ω; v = [vi]; yd = [yd
i ]; i = 0, · · · , 2M − 1;

Initialize k = 0; x0, E0 = 20 I4Γ×4Γ;
while |xk+1 − xk| ≥ ε do

find Ao
k from (12);

find gk = g(Ao
k;xk);

χk =
√

gT
k Ekgk;

g̃k = gk/χk;
xk+1 = Q

[
Ω,xk − 1

4Γ+1
Ekg̃k

]
;

Ek+1 = (4Γ)2

(4Γ)2−1

(
Ek − 2

4Γ+1
Ekg̃kg̃

T
k Ek

)
;

k = k + 1;
end while

response yd = [ydi ], the fixed-point format Ω used for the
filter coefficients, a weight vector v and the outer boundary
� for the zeros and poles. The filter design procedure can

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−70

−60

−50

−40

−30

−20

−10

0

10

Normalized frequency (rad/Hz)

Fr
eq

ue
nc

y 
re

sp
on

se
 (d

B
)

 

 

Reference
Designed

Fig. 1. Frequency response of the designed SSF with fD/F1 = 0.25, κ = 3,
and ψ̃ = π/4.

start with a reasonable order Γ for the initial approximation.
The filter order can be increased gradually if the desired
filter characteristics are not met. The algorithm starts from
an arbitrary point x0 contained within the unit sphere and a
relatively large (20 times in this algorithm) initial ellipsoid
matrix E0 = 20 I4Γ×4Γ, where I denotes the identity matrix.
The algorithm then searches for the optimal solution within
the present ellipsoid of feasible points. This algorithm then
converges on the optimal solution by successively reducing
the size of the ellipsoid by χk until it is small enough
(i.e., the algorithm has converged) or when |xk+1 − xk| is
within a chosen accuracy ε. The function Q[Ω,x] represents
the quantization effects that affect each element of x in the
Cartesian coordinate system (coefficients are transferred to
Cartesian coordinates, quantized and then transferred back
to polar coordinates). Note that stable IIR filters with real
coefficients can also be designed with the above algorithm.
To design such filters, the sample update is only performed
for half of the poles and zeros, and the other half are simply
the complex conjugates of the updated samples.

To demonstrate the performance of our filter design proce-
dure, we designed an example SSF with Γ = 10 first-order
sections. We begin by setting the parameters ϑ = 5 and
� = 0.99, i.e., the poles and zeros are bounded within a circle
of radius 0.99. For all of the FOSs, the number of bits for
representing each coefficient is set to Ω = 16. Figure 1 shows
the frequency response of the designed filter (with ε = 0.001)
as well as the desired response for the SSF with the given
fading characteristics. As this figure shows, the designed filter
accurately produces the desired response within the passband.
In the stopband, the designed filter provides more than 55 dB
attenuation. Figure 2 shows the position of the poles and zeros
for the designed filter. Note that all the poles and zeros are
located within a circle of radius 0.99.

IV. FADING SIMULATION

To demonstrate the performance of our filter design pro-
cedure, we simulated different fading scenarios. All of the
simulations were performed in fixed-point arithmetic, where
the filter coefficients are represented with Ω = 16 bit variables
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and 18-bit variables are used to store the intermediate signals.
Also, all poles and zeros are constrained to lie within a circle
of radius � = 0.99 and the target sample rate for all scenarios
is Fs = 40 MHz. As mentioned in Section III, we use an
interpolator to up-sample the generated fading variates to reach
the desired sampling rate. It would be more computationally-
efficient if the up-sampling factors were to be powers of
2. We thus design the first interpolation stage with an up-
sampling rate of I1 = 16. Then the up-sampled stream can
be efficiently filtered with an IIR lowpass filter designed with
our procedure. After interpolation and considering our filter
design assumption that F1 > 4fD, where F1 is the sampling
frequency of the SSF, the resulting signal has a bandwidth
small enough to allow us to use fading-specific interpolation
lowpass filters (SILPF) with the frequency response

Dlz
P (e−jω) =

(
1 − e−jωP

P − Pe−jω

)lz
, lz ≥ 1. (13)

In particular, this response is equivalent to the frequency
response of a cascade of lz multiplication-free filters

d1
P = [ P−1, P−1, · · · , P−1︸ ︷︷ ︸

P elements

], (14)

where P is the interpolation factor. The samples here are
passed through Tg successive SILPFs. The i-th SILPF in-
terpolates the signal 2ki times. Based on the processing
architecture, the relation between F1 and the target output
sampling rate is Fs = 16×F1×

∏Tg
i=1 2ki . From this we have

F1 = 2−(4+Sg)Fs, where Sg =
∑Tg

i=1 ki is an integer value
within the range log2(Fs/fD) − 7 ≤ Sg < log2(Fs/fD) − 6.
Based on the maximum interpolation factor 2Kmax , where
Kmax = 4 + max{Sg}, each SILPF is assigned a specific
interpolation factor.

A. Example 1
As a first example, we designed three different filters to

simulate various fading scenarios. In scenario (a) we gen-
erated the complex path gains that simulate an isotropic
fading channel with Doppler frequency fD = 9 Hz. In
(b) we simulated a nonisotropic fading system with Doppler
frequency fD = −18.5 Hz, beamwidth κ = 1, and AOA
ψ̃ = π/4 rad. Finally in (c) we have fD = 2.25 Hz,

(c)
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Fig. 3. Autocorrelation for the real and imaginary components of the
generated fading processes: (a) fD = 9 Hz, Fs = 40 MHz, κ = 0, and
ψ̃ = 0 rad, (b) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad.
(c) fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 rad.

beamwidth κ = 5, and AOA ψ̃ = π/3 rad. Figure 3 compares
the autocorrelation for the real and imaginary components of
the generated fading samples with the theoretical references.
Note that there is a close match between the desired and
generated autocorrelations up to four seconds (160 million
samples). Also, Fig. 4 plots the cross-correlation between
the real and imaginary components of the generated fading
samples and the reference curves for up to four seconds.
This figure confirms a close match between the achieved and
desired curves. Figure 5 compares the normalized LCR of the
amplitude of generated complex path gains in scenarios (a),
(b) and (c) with the theoretical LCR from (5). The LCR is
normalized to fD × Ts. This figure again confirms excellent
agreement between the theoretical and generated curves. The
normalized AFD for scenarios (a), (b) and (c) are plotted in
Fig. 6. This figure shows that the simulated AFD matches
the reference curve with good accuracy over a wide range of
normalized fading durations. Finally, in Fig. 7 the pdf of the
amplitude of the generated samples is plotted and it can be
observed that this pdf accurately mimics the Rayleigh pdf.

B. Example 2

As another example, we designed appropriate filters to
simulate the PSD proposed for the IEEE 802.11n indoor
wireless fading channel model [7]. In this model, the bell-
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Fig. 4. Crosscorrelation between the real and imaginary components of the
generated fading processes: (a) fD = 9 Hz, Fs = 40 MHz, κ = 0, and
ψ̃ = 0 rad. (b) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad.
(c) fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 rad.
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Fig. 5. Normalized level crossing rate of the envelope of the generated
fading processes: (a) fD = 9 Hz, Fs = 40 MHz, κ = 0, and ψ̃ = 0 rad.
(b) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (c)
fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and ψ̃ = π/3 rad.

shaped PSD

S(f) =

⎧⎨
⎩

1

1+A
(
f
fD

)2 + B

1+C
(
f−fspike
fspike

)2 f <= fmax

0 f > fmax

(15)

is proposed for representing indoor propagation. The second
term in (15) corresponds to a Doppler component that repre-
sents a reflection from a moving vehicle as described in model
F of [7]. This component is identified with a spike in the PSD
at frequency fspike = νv/λ, where νv is the vehicle speed
and λ is the signal wavelength. Here, fmax is the maximum
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Fig. 6. Normalized average fade duration of the envelope of the generated
fading processes: (a) fD = 9 Hz, Fs = 40 MHz, κ = 0, and ψ̃ = 0 rad.
(b) fD = −18.5 Hz, Fs = 40 MHz, κ = 1, and ψ̃ = π/4 rad. (c)
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Fig. 7. Probability density function of the amplitude of the generated fading
process for a system with fD = 2.25 Hz, Fs = 40 MHz, κ = 5, and
ψ̃ = π/3 Rad. The measured pdf closely matches to the Rayleigh distribution.

frequency component of the Doppler spectrum, which can be
set to several times the Doppler frequency [7].

We simulated an indoor fading channel with the above spec-
ifications for a system with carrier frequency Fc = 2.4 GHz,
maximum Doppler frequency 3.0 Hz, and vehicle speed
40.0 KM, which corresponds to fspike = 88.9 Hz. The values
for the constants A, B, and C in (15) are 9, 0.5, and 90000,
respectively [7]. The Bell-shaped Doppler spectrum of the
designed filter is modeled with a complex filter of order Γ = 4
and is shown along with the matching reference spectrum in
Fig. 8. Figure 9 shows the autocorrelation of the quadrature
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Fig. 9. Autocorrelation and cross-correlation of the quadrature components
of the fading process of the IEEE 802n indoor model.

components of the simulated fading processes. The cross-
correlation between quadrature components is also plotted in
the same figure. Finally, the normalized LCR and AFD of this
channel are plotted in Figs. 10 and 11, respectively. As for
example 1, the LCR and AFD are normalized to fD × Ts
and the simulations are performed in fixed-point arithmetic.
Compared to the three scenarios in the previous example, note
that the simulated indoor 802.11n model has a higher LCR
and a lower AFD.

V. CONCLUSION

While investigating the design of nonisotropic Rayleigh
fading simulators, we developed an iterative design procedure
for arbitrary complex IIR filters with quantized coefficients.
The stability of the resulting complex filters is assured by
keeping the filter poles within a circle with a radius that is
slightly smaller than one. With this procedure it is possible
to keep the quantization noise within manageable limits.
The resulting filters efficiently generate complex path gains
for several different nonisotropic fading channels. Simulation
results show that with the proposed technique, the complex
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Fig. 10. Normalized level crossing rate of the simulated system.
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Fig. 11. Normalized average fade duration of the simulated system in
Example 2.

path gains of a nonisotropic Rayleigh fading channel can be
generated with high statistical accuracy.
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