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Abstract—Compact and fast implementations of digital
Rayleigh and Ricean variate generators are presented. Polyno-
mial curve fitting is utilized along with a combination of loga-
rithmic and uniform domain segmentation to provide accuracy,
compactness and fast variate generation. A typical instantiation
of the proposed Rayleigh generator occupies 124 (< 1%) of
the configurable slices, two dedicated multipliers (< 1%), and
one on-chip block memory (< 1%) of a Xilinx Virtex-5 field-
programmable gate array (FPGA) and operates at 317 MHz,
generating 317 million Rayleigh variates per second. The Ricean
variate generator implementation on the same device utilizes
366 (< 1%) of the logical slices, three on-chip block memories
(< 1%), and 11 (2.8%) of the dedicated multipliers. The
application of the Rayleigh and Ricean variate generators is
demonstrated in a FPGA-based bit error rate simulator that
measures at hardware speeds the symbol error rate performance
of a typical wireless communication system over Rayleigh and
Ricean fading channels.

I. INTRODUCTION

THE Gaussian, Rayleigh and Ricean distributions have
been applied to model and simulate a variety of different

scientific and engineering systems. An especially important
application of these distributions is to model wireless fading
channels. The classical model of a communication channel is
the additive white Gaussian noise (AWGN) channel, where
the transmitted signal s(t) is corrupted by the addition of
white Gaussian noise n(t) thereby producing a received signal
y(t) = s(t) + n(t) [1]. In a more accurate model of wireless
channels, the received complex envelope is expressed as
y(t) = g(t)s(t)+n(t), where the fading gain g(t) is a complex
Gaussian random variable with independent quadrature com-
ponents. If this fading process has a zero (non-zero) mean
then the envelope |g(t)| of the gain has the Rayleigh (Ricean)
distribution [2].

The radio channel is usually the key factor that limits the
performance of a wireless communication system. System per-
formance is commonly characterized through the symbol error
rate (SER) versus signal-to-noise ratio (SNR) relationship and
this is typically measured experimentally using Monte Carlo
(MC) simulations on workstations. Wireless communication
systems are increasingly complex and the number of possible
operating modes that must be verified has increased dramati-
cally. As the number of possible operating modes increases
(e.g., more than 300 modulation and coding schemes are
present in the IEEE 802.11n standard), the bit-true fixed-point
MC simulation times become the bottleneck to timely product
design and verification.

Hardware-based simulation of digital communication sys-
tems offers significant speedups compared to software simu-
lations with no significant loss in accuracy [3], [4]. Recently,

several hardware implementations of Gaussian variate gener-
ators have been proposed (see [5], [6] and their references).
However, hardware implementations of other important distri-
butions, such as the Rayleigh and Ricean distributions, have
received far less attention [7], [8]. This brief extends our earlier
work on designing Gaussian variate generators (GVGs) [6].
We now present high-throughput and compact Rayleigh and
Ricean variate generators that are suitable for implementation
on a field-programmable gate array (FPGA). We utilize the
Box-Muller (BM) algorithm [9] to efficiently implement a
Rayleigh variate generator. This generator is then enhanced
to generate variates with the Ricean distribution. The Ricean
variate generator can in turn be used to generate variates for
two other important distributions: the Gamma distribution and
the Chi-squared distribution with two degrees of freedom. The
Gamma and Chi-squared distributions have been used to model
interference in wireless communication systems [10].

The sequel is organized as follows. Section II presents
our FPGA implementation of the Rayleigh variate generator.
Section III presents the new Ricean variate generator. The
implementation costs and simulation results are presented in
Section IV. Concluding remarks appear in Section V.

II. RAYLEIGH VARIATE GENERATOR

Let ni and nq be two independent normally-distributed
variates with zero means and equal variance σ2. The variable

defining the magnitude r =
√

n2
i + n2

q has a Rayleigh distri-

bution with mean σ
√

π/2 and variance (4− π)σ2/2 [11]. To
implement a Rayleigh variate generator, instead of generating
two independent Gaussian variables, ni and nq, and then
computing the magnitude of the complex Gaussian-distributed
variate n = ni + j nq, where j2 = −1, we use the well-
known BM algorithm. According to this algorithm, if u 1 and
u2 are two independent uniformly-distributed pseudorandom
numbers (PNs) in the interval (0, 1) and f(u1) =

√−2 ln(u1),
then n1 = f(u1) × sin(2πu2) and n2 = f(u1) × cos(2πu2)
are two independent variates from a zero-mean, unit-variance
Gaussian distribution N (0, 1). Therefore the variate r =√

n2
1 + n2

2 = f(u1) follows the Rayleigh distribution.
The authors in [8] also use the BM algorithm to generate

Rayleigh-distributed variates, but they employ the iterative
CORDIC algorithm to implement the logarithm and square
root operations in f(u1). For a higher throughput realization,
following the design procedures developed independently in
[12] and [6], we adopt a hybrid segmentation scheme over the
full domain u1 ∈ (0, 1). First, the subintervals (0, 0.5) and
(0.5, 1) are segmented logarithmically into �1 segments from
0.5 down to 0 and from 0.5 up to 1, respectively. Then each
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segment is subdivided uniformly into �2 subsegments. In this
work we utilize �1 = 62 logarithmic segments and �2 = 8
uniform sub-segments within each logarithmic segment. Then
we utilize a linear polynomial a1u1+a0 to approximate f(u1)
within each segment. A polynomial curve fitting approach [13]
was also utilized to approximate f(u1) with a polynomial
within each segment. The optimized coefficients of each
polynomial were calculated using the orthogonal least squares
fit (OLSF) method [14] to minimize the residual error.

For a 32-bit representation of u1, the coefficients of f(u1)
are of the order of 232. However, the required values of f(u1)
lie in [0, 6.66], which can be represented sufficiently accurately
in two’s complement 16-bit fixed-point format with a 12-
bit fraction. Storing the large coefficient values of f(u1) on-
chip requires relatively large memories, increases the hardware
complexity and likely slows down the variate generation rate.
To overcome these problems, only suitably scaled 16-bit
coefficients of f(u1) for all segments are stored in on-chip
memory. An experimental range analysis of the values of a 1

and a0 shows that these values can be represented within 16
bits in the s16.14 and s16.12 formats, respectively, where
“s w1.w2” denotes that the variable is signed, with word length
w1 and fraction length w2.

Using the scaled coefficients and, correspondingly, the
scaled value of u1, denoted by ũ1, the linear polynomial
approximation f(u1) = (ã1 × ũ1) + ã0 is representable
using 16-bit fixed-point numbers. Fig. 1 shows the hardware
datapath and the fixed-point format of the intermediate signals
for generating Rayleigh-distributed variates using a linear
approximation. The PRNG block generates 32-bit pseudo-
random uniformly-distributed variates. According to the value
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Fig. 1. The dataflow diagram for generating Rayleigh variates.

of u1, an Addressing Unit (AU) calculates the scaled value
of u1 and generates a signed value of ũ1 in s16.15 format
(to be multiplied by the signed value ã1). The AU also
produces the segment address. The coefficient memory stores
the 2�1�2 = 992 scaled coefficients ã1 and ã0 in the 16-
bit fixed-point format. Then the scaled coefficients of the
linear piece can be addressed and read directly from coef-
ficient memory to approximate f(u1). Finally, the result of
f(u1) = (ã1× ũ1)+ ã0 is multiplied by σ to support Rayleigh
variates with variable noise variances. Note that even though
the σ is represented in s16.14 format (i.e., σ < 2.0), it could
be represented with fewer fraction bits to support σ ≥ 2.0.

To form a PRNG with equally-distributed output integers

and a long period, instead of using a conventional Tausworthe
generator, as in [8], we utilize a twisted generalized feedback
shift register generator [15]. The 32-bit T800 uniform random
number generator provides a long period of 2 800 − 1 and
improved equi-distribution properties compared to a simple
Tausworthe generator. The datapath of T800, as shown in Fig.
2, requires a dual-port memory and only shift right (�) and
bitwise logical operations. The memory contains an array of
25 32-bit initial seeds and is implemented in read-before-write
mode. In this mode, at every clock cycle two state values are
read (always one at a constant relative offset OffsetM from the
first one) before a new state is written into one of the addressed
locations. The address line addrRW for the read/write port and
the address line addrR for the read port are driven by mod 25
counters. The 5-bit address addrRW is initialized to zero and
increments up to 24 and wraps around to address 1. Also, the
5-bit addrR is initialized with OffsetM=7 and increments to 24
and resets to 1. The parameters used in the datapath of the
T800 PRNG in Fig. 2 are a= 8ebfd028, (s,b)=(7,2b5b2500),
(t,c) = (15,db8b0000), and l=16 [15].
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Fig. 2. Block diagram of the T800 PRNG.

The implementation of the T800 datapath on a Xilinx
Virtex-5 5VFX200TFF1738-2 FPGA uses only 51 config-
urable slices while operating at 589 MHz, generating 589
million 32-bit uniformly-distributed random variates per sec-
ond. The implementation of the Rayleigh variate generator
datapath in Fig. 1 on the same FPGA requires 124 configurable
slices (< 1%), two of the DSP48E modules (< 1%), and
one of the block memories (< 1%) and generates 317 million
Rayleigh variates per second. Fig. 3 shows that the probability
density function (PDF) of the magnitude of 4×107 generated
Rayleigh variates closely matches the theoretical Rayleigh
PDF. Fig. 4 plots on a logarithmic scale the absolute error
when approximating f(u1) using �1 = 62 for �2 = 8 and 16
uniform subsegments. As there is relatively little improvement
in the accuracy of f(u1) from �2 = 8 to �2 = 16, we chose
�1 = 62 and �2 = 8 and used a smaller memory to store the
scaled coefficients ã1 and ã0 of the 2�1�2 segments.

III. RICEAN VARIATE GENERATOR

If ni and nq are two independent Gaussian-distributed
random variates with equal variance σ2 and non-zero means
µi = ν sin(2πθ) and µq = ν cos(2πθ), respectively, where
ν ≥ 0 and θ is a uniformly-distributed random variable within
(0, 1), then c =

√
(σni + µi)2 + (σnq + µq)2 follows the
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Fig. 3. PDFs of the generated and theoretical Rayleigh distributions using
4 × 107 generated samples.
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Fig. 4. Absolute approximation error of f(u1) for different numbers of
uniform segments.

Ricean distribution [11]. When ν = 0, the Ricean distribution
reduces to the Rayleigh distribution.

A general approach for generating random samples from
an arbitrary distribution is the inversion method [7]. Note that
a random sample x with a cumulative distribution function
(CDF) F can be generated as x = F−1(u), where u is a
uniform random variate between zero and one. In [16] an
approximation for the zeroth-order modified Bessel function
of the first kind is used to approximate the closed-form of
the CDF of a Ricean random variable. While the Ricean CDF
inverse c = F−1(u) is difficult to solve directly, a MC method
was applied in [16] to generate Rice random variables.

To implement the Ricean variate generator, we start by
computing the means µi and µq. While there are various stan-
dard techniques for approximating trigonometric functions,
such as the CORDIC algorithm [17] and direct table-lookup
[18], the choice of implementation involves balancing such
requirements as throughput, latency, and logical resource costs
as well as the target accuracy. Fig. 5 (a) shows a datapath
that generates two mean values µi and µq by approximating
sin(2πθ) and cos(2πθ) (where θ is an external input) using
uniform segmentation of the domain [0, 2π] and a linear
approximation within each segment. By splitting [0, 2π] into
256 segments, the Sin/Cos Coeff. Memory in Fig. 5 (a) is con-
figured as 512×32, where the two coefficients of every linear
polynomial are represented in s16.15 format. In the variate
mean generator in Fig. 5 (a), {0, θ[7 : 0]} and {1, θ[7 : 0]}
address the coefficients of the 256 segments of the sine and
cosine functions, which are stored in the first and second half
of the 512× 32-bit Sin/Cos Coeff. Memory, respectively. Note
that one may share one multiplier and one adder in the datapath
in Fig. 5 (a) to implement both the sine and cosine functions
at the expense of lower throughput and greater latency. Also,

one can exploit the relationship between these trigonometric
functions to utilize a smaller memory at the expense of some
additional logic. To generate two independent variates n i and
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Fig. 5. The datapath for (a) generating the means of complex Gaussian
variates and (b) the Gaussian variate generator.

nq with the Gaussian distribution N (0, σ2), as shown in
Fig. 5 (b), the generated Rayleigh variate r is multiplied by
sin(2πu2) and cos(2πu2), respectively, where u2 is uniformly-
distributed within (0, 1). The sine and cosine functions are
again approximated using uniform segmentation and linear
polynomials. Note that since the polynomial coefficients are
signed values and thus signed multipliers are required, u 2 and
similarly θ in Fig. 5 (a), are represented as signed numbers in
s16.15 format.

Fig. 6 shows the datapath of the Ricean variate generator. It
receives independent Gaussian variates ni and nq with equal
variance σ2 and means of µi and µq , respectively, all in s16.12
format, and generates a random variate c with the Ricean
distribution. The datapath is divided into two parts. Part (a)
generates two biased (i.e., non-zero mean) Gaussian variates
bi = σni + µi and bq = σnq + µq. When σ = 1, the datapath
generates the random variate χ = (ni + µi)2 + (nq + µq)2,
which has a non-central chi-square distribution with two
degrees of freedom and non-centrality parameter ν 2 = µ2

i +µ2
q

[11]. Accumulation of generated random values χ from the
datapath in Fig. 6 (a) yields a random variate with the gamma
distribution and the square root of χ yields a random variate
with the Ricean distribution.

To approximate c =
√

χ, we first note that the values of
r = f(u1) for a 32-bit u1 lie within the interval [0, 6.66).
Therefore, the two Gaussian variates ni and nq lie within
(−6.66, 6.66). For σ ≤ 1, the value of random variate χ lies
within [0, 128). We also note that the square root function has
a high-slope region near χ = 0. Thus, similar to the segmen-
tation scheme for function f(u1) in Section II, as shown in
Fig. 7, the interval [0, 128] is first segmented logarithmically
from χ = 128 down to 0 into �1 segments and then each
segment is sub-divided further into �2 uniform subsegments.
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Then the value of
√

χ within each subsegment is approximated
using a linear function. We found that �1 = 16 and �2 = 8
gave sufficient accuracy. To approximate the coefficients a 1

and a0 of the fitting polynomial c = a1χ + a0 for each
subsegment, we utilize linear regression. As shown in Fig.
6 (b), the coefficients a1 and a0 of 128 linear polynomials are
stored in distributed memories ROMa1 (in u16.16) and ROMa0

(in u16.12), respectively. The Addressing Unit returns the 7-bit
address for ROMa1 and ROMa0 as well as returning the scaled
value of χ. The relatively small approximation errors shown
in Fig. 8 demonstrate the effectiveness of our segmentation
scheme in equally limiting the approximation error over the
interval [0, 128]. Fig. 9 shows the PDF’s of the generated and
theoretical Ricean distributions with σ = 0.25 and ν = 0.5
using 8 × 104 generated samples. Note that the PDF of the
generated variates closely follows the Ricean distribution.

IV. SIMULATION AND IMPLEMENTATION RESULTS

Table I summarizes the implementation results for the key
modules on a Xilinx Virtex-5 5VFX200TFF1738-2 FPGA.
Our Ricean variate generator is at least four orders of magni-
tude faster than the software model implemented using our op-
timized fixed-point library on an Intel Core 2 Quad processor
running at 1.58 GHz and 3 GB of RAM. On a Xilinx Virtex-4
XC4VLX200-FF1513-11 FPGA, the Ricean variate generator
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Fig. 8. Approximation error of the fixed-point square root error using
16 logarithmic segments and 8 linear subsegments within each logarithmic
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Fig. 9. PDFs of the generated and theoretical Ricean distributions with
σ = 0.25 and ν = 0.5 using 8 × 104 generated samples.

uses 1002 (1.1%) of the logical slices, 3 (< 1%) dedicated
memory blocks, 11 (11.4%) on-chip 18 × 18-bit multipliers
and runs at 275 MHz. On a Xilinx Spartan XC3S4000L-
4FG900 FPGA, the Ricean variate generator uses 1044(3.7%)
of logical slices, 3(3.1%) memory blocks, 15(15.6%) 18×18-
bit multipliers and runs at 116 MHz. Note that both the
Rayleigh and Ricean variate generators are especially com-
pact, which should make them convenient for implementation
along with the other signal processing modules of a wireless
communication system, quite possibly on a single FPGA. We
utilized our fixed-point Rayleigh and Ricean variate generator
in a FPGA-based error rate measurement system to evaluate
the performance of a simple wireless communication system.
This system uses 16-QAM modulation with Gray coding at the
transmitter. The receiver uses a minimum mean-square error
(MMSE) detector and channel state information is assumed
to be available at the receiver. Fig. 10 plots the theoretical
and measured symbol error rates over a Rayleigh fading
channel for different Eb/No values, where Eb is the bit
energy and No is the noise power spectral density. Fig. 11
plots the theoretical and measured SER over a Ricean fading
channel, where the Ricean factor is assumed to be 10 dB
and the maximum Doppler frequency is 100 Hz. These plots
show that our Rayleigh and Ricean variate generators can be
efficiently used in the hardware-accelerated error rate measure-
ment of wireless communication systems over Rayleigh and
Ricean fading channels. FPGA-based baseband performance
verification of wireless communication systems under realistic
fading channel models greatly speeds up the performance
evaluation of wireless communication systems at high SNR
regions and/or systems utilizing strong channel codes, such as
low-density parity-check codes (LDPCs), which require very
lengthy simulations.
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TABLE I
CHARACTERISTICS OF THE IMPLEMENTED MODULES ON A XILINX VIRTEX-5 FPGA

Module T800 Sine/ Means Square Rayleigh Gaussian Ricean
Cosine generator root

Output rate (Msamp/sec) 589 404 404 419 317 317 317
Configurable slices 51 18 16 143 124 (< 1%) 197 (< 1%) 366 (< 1%)
DSP48E modules - 2 4 1 2 (< 1%) 6 (1.5%) 11 (2.8%)

On-chip memory blocks − 1 1 − 1 (< 1%) 2 (< 1%) 3 (< 1%)
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Fig. 10. Theoretical and measured SER of a 16-QAM modulated commu-
nication system over a Rayleigh fading channel.
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Fig. 11. Theoretical and measured SER of a 16-QAM modulated commu-
nication system over a Ricean fading channel with a Ricean factor of 10 dB
and a maximum Doppler frequency of 100 Hz.

V. CONCLUSIONS

This brief presented efficient implementations of random
variate generators with accurate Rayleigh and Ricean dis-
tributions. These two distributions are widely used in com-
munication system analysis, such as in the modeling and
simulation of wireless radio channels. We utilized a hy-
brid domain segmentation, which combined logarithmic and
uniform segmentations as well as polynomial curve fitting
to accurately approximate required non-linear functions. On
a Xilinx Virtex-5 FPGA, the Rayleigh and Ricean variate
generators use less then 1% of the logical slices, less then 1%
of on-chip memories, 2.8% of DSP48E modules and generate
317 million samples per second. The sample generation rate
is at least four orders of magnitude faster than a fixed-point
software model implemented on a 1.58 GHz Intel Core 2 Quad
processor. The Rayleigh and Ricean variate generators were
implemented and used in a hardware-based error rate measure-
ment system to evaluate the performance of a typical wireless

communication system. The compactness and fast output rate
of these two fading variate generators, together with their
compatibility with rapid prototyping design verification using
FPGAs, should make the generators an attractive tool in the
hardware-accelerated verification of modern wireless systems.
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