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Abstract—This article presents an ultra-compact and high-
throughput reconfigurable architecture for implementing an
efficient fading channel simulator that supports a relatively
large number of propagation paths. To closely reflect actual
radio signal propagation conditions, we used a recently improved
Rayleigh and Ricean fading channel model based on the sum-
of-sinusoids technique. The improved model is optimized for a
significantly more compact hardware implementation. To achieve
a fast fading variate generation rate with much less hardware
and no significant loss in accuracy, instead of generating fading
samples directly, the new scheme first generates fading samples
at a lower rate using a time-multiplexed datapath that can be fit
into a small fraction of a field-programmable gate array (FPGA).
In the second step, the simulator uses a compact multiplication-
free linear interpolator to produce the fading samples between
variates generated at a lower rate. Implementing a 64-path
fading channel simulator on a Xilinx Virtex-4 XC4VLX200-11
FPGA requires only 13044 (14%) of the configurable slices,
10 (2%) of the block memories, and one (1%) of the dedicated
DSP blocks, while generating 64 × 191 million complex-valued
fading samples per second. The simulated paths can be readily
combined to form high path count models for multiple-input
multiple-output systems as well as frequency-selective channels.

Index Terms—Rayleigh fading, Ricean fading, sum-of-
sinusoids model, hardware-accelerated simulation, MIMO chan-
nel model.

I. INTRODUCTION

Emerging wireless communication standards provide higher
data rates, more efficient spectrum utilization and improved
user services. Multiple-input multiple-output (MIMO) wireless
communication technology has been included in many recent
wireless standards, such as IEEE 802.11n, 802.16m and
802.20, to increase both the data rate and spectrum efficiency
over traditional single-antenna transmission. To keep up with
the fast evolution of communication technologies and wireless
standards, the design verification and characterization environ-
ment must be configurable to provide reliable and repeatable
measurements. Unfortunately, the high computational com-
plexity of the conventional fixed-point software simulation of
MIMO communication systems makes software simulations
increasingly impractical for the performance evaluation of
high-throughput broadband systems. Fortunately, hardware-
accelerated prototyping of both the design and test environ-

ment now offers the potential to significantly shorten the
design cycle and reduce the time-to-market.

Field-programmable gate array (FPGA) technology has al-
ready been adopted to speed up the prototyping and verifi-
cation of new communication systems [1], [2]. Ideally, the
full communication system chain (i.e., the transmitter, fading
channel simulator and the receiver) should be prototyped
completely in a single device. A parameterizable and ac-
curate fading channel simulator is a crucial component for
the repeatable baseband design and verification of wireless
communication systems. Commercially-available fading chan-
nel simulators (e.g., [3]–[5]) are stand-alone units that are
relatively costly and cannot be miniaturized to fit onto a single
device along with the rest of the prototyped system. A single-
chip characterization system avoids the need for external
interfaces that connect bulky and expensive test equipment to
the device under test. In addition, while commercial testers
support only a limited number of channels, these testers
cannot be readily scaled-up for simulating scenarios where
the number of simultaneous communication channels is large,
such as when ad-hoc networks and MIMO channels with a
relatively large number of antennas to be simulated.

One well-known technique for simulating fading channels is
the filter-based method [6]. In this approach, to generate the in-
phase and quadrature components of fading variates with the
required correlation between variates, two independent, zero-
mean, white Gaussian random variables with identical variance
are passed through a low-pass filter. This filter is often called
the shaping filter for it determines the power spectrum shape
and the temporal correlation function of the fading process.
Unfortunately, this technique has relatively high computational
complexity and is inconvenient for implementing a large
number of fading channels on a single FPGA [7]. For an
especially compact hardware implementation that supports
a large number of propagation paths, we utilize the so-
called sum-of-sinusoids (SOS) technique [8]. In this approach
the fading process is modeled by superimposing a sufficient
number of sinusoidal waveforms with amplitudes, frequencies
and phases that are selected appropriately to generate the
desired statistical properties. The SOS-based technique is



widely used in the COST 259, COST 273, and IST-Winner
fading channel models [9], [10].

Various computationally-efficient fading channel models
have been proposed over the last three decades that involve
superimposing an acceptably small number of sinusoids. Since
the performance of communication systems strongly depends
on time-varying fading channel characteristics, it is crucial
to choose a channel model that faithfully reproduces the
statistical properties of the actual propagation conditions.
Even though some of the already proposed fading models
utilize only a small number of sinusoids and, hence, are
computationally-efficient, their statistical accuracy has been
questioned [11]–[14]. Despite the known limitations in the sta-
tistical properties of most existing SOS-based models, several
compact fading channel simulators that can be implemented on
a small fraction of a single FPGA have been described in the
literature [14]–[24]. However, these hardware implementations
are still not compact enough to permit a large number of paths
to be implemented on a single FPGA.

In this article we propose an efficient reconfigurable archi-
tecture for implementing a relatively large number of inde-
pendent streams of fading samples that can be parameterized
separately to simulate different propagation conditions. The
new architecture is compact enough to allow various fading
scenarios (e.g., single and multipath, Rayleigh and Ricean
fading channels for single and multiple antenna communica-
tion) to be simulated on a single FPGA. To implement this
architecture, first we chose the recently improved SOS-based
fading channel model from [14] that can generate a sequence
of fading samples with accurate statistics. We propose a new
update procedure for the sinusoid parameters of the SOS-based
fading channel model. This optimization results in a signifi-
cantly more compact hardware implementation of Rayleigh
and Ricean fading channels with a relatively large number
of paths. As opposed to the design in [14], which generates
fading samples directly, the new fading channel simulator
supports higher throughput and generates fading variates in
two consecutive stages. First the fading sequence is generated
at a much slower rate. This allows us to utilize a compact
time-multiplexed architecture to generate correlated fading
variates. Then we use a multiplication-free linear interpolator
to produce fading samples at the desired higher sample rate.
An important property of the proposed architecture is that
since the same datapath is shared to generate fading variates
at a lower rate, the number of superimposed sinusoids mainly
impacts the size of the memories used to store the sinusoid pa-
rameters and thus has almost no impact on the computational
complexity of the proposed fading channel simulator.

The rest of this article is organized as follows. Section II
reviews related work on Rayleigh fading channel models and
compares the important statistical properties of three well-
known SOS-based models. Section III presents our modifica-
tions that allow for a more efficient hardware implementation.
In Section IV we describe our compact and high-throughput
reconfigurable architecture for a single-FPGA implementation
of the fading channel simulator with a large number of inde-

pendent channels. Finally, Section V makes some concluding
remarks.

II. RELATED WORK ON RAYLEIGH FADING MODELS

A fading channel is commonly modeled as a complex
Gaussian wide-sense stationary (WSS) uncorrelated scattering
process c(t) = ci(t) + jcq(t) over time t, where the enve-
lope |c(t)| follows the Rayleigh distribution [8]. In a two-
dimensional isotropic scattering environment with an omnidi-
rectional receiving antenna at the receiver, the autocorrelation
function (ACF) associated with either ci(t) or cq(t) is ideally
Rci,ci(τ) = Rcq,cq(τ) = J0(2πfDτ), where fD is the maxi-
mum Doppler frequency and J0(·) is the zeroth-order Bessel
function of the first kind. The cross-correlation function (CCF)
between ci(t) and cq(t) is ideally Rci,cq(τ) = Rcq,ci(τ) = 0.

In general, SOS-based models can be classified as either
deterministic and stochastic models. Deterministic models use
constant parameters (gains, frequencies and phases) while
the parameters in stochastic models (e.g., gains and/or fre-
quencies) are random variables. Over the past three decades,
many deterministic and stochastic SOS-based fading channel
models have been proposed. However, only a few have shown
improved statistical properties over earlier models to the extent
that they have become accepted as new benchmarks [13].
Several important characteristics should be considered when
choosing a SOS-based model for simulating fading channels.
These properties are discussed below using four widely-used
fading models.

The Rayleigh fading model of Li et al. [25] (henceforth
called Model I) can be written in discrete time as follows:

Model I:

ci[m] =

√
1
N

N−1∑
n=0

cos
(
2πfDTsm cosαn + ϕn

)

cq[m] =

√
1
N

N−1∑
n=0

sin
(
2πfDTsm sinαn + ψn

)

where N is some sufficiently large number of sinusoids, m
is the discrete-time index, fDTs is the normalized maximum
Doppler frequency, Ts is the sample period, and αn =
2πn/(4N) + αo is the angle of arrival of the n-th sinusoid
where 0 < αo < 2π/N and αo �= π/N . The phase parameters
of the n-th sinusoidal components, ϕn and ψn, are statistically
independent and uniformly-distributed random variables over
[−π, π), for all n.

In the deterministic Model I, since the values of the pa-
rameters are constants, only one simulation trial is sufficient
to represent the statistical properties of the generated fading
sequence. Fig. 1 shows the ACF of the quadrature compo-
nent and the CCF between quadrature components c i(t) and
cq(t). While the ACF approaches the reference function by
increasing the number of sinusoids, the CCF deviates from the
reference value, as shown in Fig. 1, even for greater values of
N . Unfortunately, this property is common among many other
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Fig. 1. ACF and CCF of Model I for one block containing 105 fading
samples with fDTs = 0.01.

proposed deterministic models, such as [25]–[28], as the CCF
deviates from the reference function [29].

The deterministic model recently proposed by Pätzold et al.
[29] (henceforth called Model II) can be written in discrete
time as follows:

Model II:

ci[m] =
2√
N

N∑
n=1

cos(2πfnTsm+ ϕn
)

cq[m] =
2√
N

N∑
n=1

cos(2πf́nTsm+ ψn
)

where ϕn and ψn are statistically-independent and uniformly-
distributed random variables over [0, 2π), for all n, and the
discrete Doppler frequencies fn and f́n of the n-th sinusoid
are defined as

fn = fD cos
(π(3n− 1)

6N

)
,

f́n = fD cos
(π(3n− 2)

6N

)
.

As shown in Fig. 2, the CCF between the quadrature com-
ponents of the generated fading sequence approaches more
closely to the theoretical reference value of zero compared to
Model I. Model II has lower computational complexity and
better statistical properties compared to Model I (and most
earlier deterministic models); nevertheless, as shown in [29],
the statistical properties of generated fading sequence deviate
from the reference values at large lags, which might not be
acceptable for some communication systems.
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Fig. 2. ACF and CCF of Model II for one block containing 105 fading
samples with fDTs = 0.01.

The stochastic Rayleigh model proposed by Zajić et al. [30]
(henceforth called Model III) can be written in discrete time
as follows:

Model III:

ci[m] =
1√
N

N∑
n=1

2 cos(βn) cos
(
2πfDTsm cosαn + ϕn

)

cq[m] =
1√
N

N∑
n=1

2 sin(βn) sin
(
2πfDTsm cosαn + ϕn

)

where αn = (2πn − π + θ)/(4N) and ϕn, βn and θ
are statistically-independent and uniformly-distributed random
variables over [−π, π), for all n.

An important first point to note is that the computational
requirements of SOS-based models can vary significantly. For
example, Model III is more computationally complex than
Model I and Model II as it requires summing the products
of trigonometric functions. To highlight this additional com-
plexity, one can use identities to rewrite Model III as:

ci[m] =
1√
N

N∑
n=1

cos
(
2πfDTsm cosαn + ϕn + βn

)

+
1√
N

N∑
n=1

cos
(
2πfDTsm cosαn + ϕn − βn

)

cq[m] =
1√
N

N∑
n=1

cos
(
2πfDTsm cosαn + ϕn − βn

)

− 1√
N

N∑
n=1

cos
(
2πfDTsm cosαn + ϕn + βn

)



We can see that Model III uses twice as many sinusoids as
Model I and Model II. Therefore, to ensure fair comparisons
of their statistical properties, one should halve the value of N
for Model III with respect to the N value used in Models I
and II.

The second important point to note is that the parameters
of the stochastic models are random variables and the statis-
tical properties of every simulation trial changes. When the
statistical properties of generated fading samples are averaged
over only one block of fading samples, they do not converge
to the reference properties. Fig. 3 shows that the ACF of the
quadrature component for one block containing 10 5 fading
samples with fDTs = 0.01 deviates significantly from the
reference function.
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Fig. 3. ACF and CCF of Model III for one block containing 105 fading
samples with fDTs = 0.01.

While this model, and in general most earlier stochastic
models such as [31]–[33], have inaccuracies with respect to
matching the reference ACF over every simulation trial, their
statistical properties converge to the desired properties only
by averaging over a sufficiently large number of generated
blocks. Fig. 4 shows that the ACF and CCF properties of
generated fading variates are relatively close to the reference
values, especially for N = 8 sinusoids.

Since ensemble averaging greatly improves the statistical
properties of stochastic SOS-based models, these models can
be used to simulate block-based wireless systems, where the
channel can be assumed to change randomly between two
consecutive blocks (e.g., in the burst error analysis of mobile
communication systems). However, the increased statistical
accuracy from ensemble averaging comes at the cost of sig-
nificantly increased computation and, hence, longer simulation
times and greater simulator implementation cost. In addition,
generating a new set of parameters at the beginning of every
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Fig. 4. ACF and CCF of Model III for 30 blocks containing 105 fading
samples with fDTs = 0.01.

transmitted block is an inconvenience in the simulation of
continuous communication.

When implementing a fading channel simulator for a prac-
tical communication system, it is preferable to have the lowest
possible complexity algorithm that generates a fading process
c(t) whose statistical properties match those of the reference
model over every transmitted block of any arbitrary length. An
accurate SOS-based fading channel model (henceforth called
Model IV) that (a) is stochastic; (b) ensures that the statistical
properties of every generated block closely match those of
the reference model; and (c) requires only a small number of
sinusoids with a low computational complexity, was proposed
in [14]. This improved SOS-based model can be written in
discrete time as follows:

Model IV:

ci[m] =
1√
K + 1

[√
K cos(2πfDTsm cos θo + φo)

+

√
1
N

N∑
n=1

cos
(
2πfDTsm cosαn[m] + ϕn[m]

)]
(1)

cq[m] =
1√
K + 1

[√
K sin(2πfDTsm cos θo + φo)

+

√
1
N

N∑
n=1

cos
(
2πfDTsm sinαn[m] + ψn[m]

)]
, (2)

where K is the Ricean factor and the line-of-sight (LOS)
component is modeled as a zero-mean stochastic sinusoid
with a fixed angle of arrival θo and initial phase φo that
are uniformly distributed random variables over [−π, π). The
Rayleigh component of Model IV uses independent random



walk processes (RWPs) [34] for the 2N + 1 sinusoid pa-
rameters θ, ϕn and ψn instead of random variables, as used
in Models I and II. The angle of arrival of the n-th path
is updated according to the RWP θ[m] in the expression
αn[m] = (2πn−π+ θ[m])/(4N). It is shown in [14] that the
key statistical properties of the generated fading samples—
such as autocorrelation, cross-correlation, and level crossing
rate—produced by Model IV do indeed closely match the
ideal statistics, even when summing only N = 8 sinusoids.
Therefore, we use Model IV as the most accurate available
reduced complexity SOS-based model for implementing the
new fading channel simulator.

III. MODIFICATION OF THE ACCURATE SOS-BASED

FADING CHANNEL MODEL FOR EFFICIENT HARDWARE

SIMULATOR IMPLEMENTATION

We modified the update procedure for the RWPs presented
in [14] to achieve a significantly more compact hardware
implementation of a high-path count fading channel simulator.
Algorithm 1 describes our new procedure for updating the
2N + 1 RWPs θ, ϕn[m] and ψn[m], where m is the fading
sample index and the “fadingLength” is the block length of
the generated fading samples.

Each RWP is initialized with a uniformly-distributed ran-
dom value between [−π, π) and an initial walking direction
s = 1. The RWP updates between [−π, π) with a very small
signed step size δ towards π when s = 1, while a direction
of s = −1 updates towards −π. When the absolute value of
the RWP exceeds π, then the update direction is reversed. For
suitably slowly changing RWPs θ, ϕn and ψn, the unsigned
coefficient ξ is chosen to be small enough that the step size δ
produces highly correlated angles of arrival and path phases.
The very small signed values of δ are generated by multiplying
the very small constant ξ by a generated random variable
u[m], which is a source of independent, uniformly-distributed
samples over [0, 1). Using numerical simulations we will show
that updating the RWPs only every few clock cycles (instead
of updating them in every clock cycle, as was used in [14])
has negligible impact on the statistical properties of the fading
process. In this case, we can utilize a shared hardware datapath
to update all 2N + 1 RWPs, which minimizes the resource
requirements. To update the RWPs only every η clock cycles,
ξ (which depends on the normalized Doppler rate) must be
chosen appropriately. Some suitable predefined values of ξ for
various normalized Doppler rates were suggested in [14]. The
coefficient

√
η in the step size parameter δ compensates for

the skipped update cycles. To further simplify the hardware
that updates the RWPs, we used the nearest power-of-2 to⌊
log2(

√
ηξ)

⌋
to avoid multiplications in δχ.

To verify the accuracy of Model IV using our modified
update procedure for the sinusoid parameters, we compared
fixed-point simulation results of the key statistical properties
of the generated fading variates (using N = 8 sinusoids) with
the reference functions. We present results for two Ricean
factors: K = 0 (Rayleigh) and K = 3. As shown in Fig.
5, the autocorrelation of the real part of the complex envelope

Algorithm 1 Update procedure for RWPs θ, ϕn and ψn.
1: //Initializing RWPs

2: θ[0] = U[−π, π];
3: sθ = 1; // Initial updating direction

4: for n = 1 : N do
5: ϕn[0] = U[−π, π); sϕ[n] = 1;
6: ψn[0] = U[−π, π); sψ[n] = 1;
7: end for
8: Initialize ξ � 1; // Unsigned small constant
9: // Updating RWPs

10: for m = 1 : fadingLength do
11: if mod (m, η) == 0 then
12: // Update RWPs only every η clock cycles
13: δθ = sθ × ξ × u[m] × √

η; // Signed updating step
size

14: // Updating θ[m]
15: θ[m] = θ[m− 1] + δθ;
16: if θ[m] ≥ π then
17: θ[m] = π;
18: sθ = −sθ; // Updating towards −π
19: end if
20: if θ[m] < −π then
21: θ[m] = −π;
22: sθ = −sθ; // Updating towards +π
23: end if
24: // Updating 2N RWPs ϕn[m] and ψn[m]
25: for χn ∈ {ϕn, ψn} do
26: for n = 1 : N do
27: δχn = sχn × ξ×u[m]×√

η; // Signed updating
step size

28: χn[m] = χn[m− 1] + δχn ;
29: if χn[m] ≥ π then
30: χn[m] = π;
31: sχn = −sχn ; // Updating towards −π
32: end if
33: if χn[m] < −π then
34: χn[m] = −π;
35: sχn = −sχn ; // Updating towards +π
36: end if
37: end for
38: end for
39: end if
40: end for

c(t) for one block containing 2 × 106 fading samples, with
fDTs = 0.01 and θo = π/4, overlies the reference functions
for both the Rayleigh and Ricean fading cases computed using
double-precision floating-point arithmetic. For Ricean fading,
the reference ACFs and CCFs of the quadrature components
are given by the following equations [35]:

Rci,ci(τ) = Rcq,cq(τ) =
[Jo(2πfDτ)

+ K cos(2πfDτ cos θo)
]
/(2 + 2K)

Rci,cq(τ) = −Rcq,ci(τ) = K sin(2πfDτ cos θo)/(2 + 2K)

Comparing Fig. 3 with Fig. 5 shows that utilizing RWPs
instead of random variables for the parameters of the sinusoids
significantly improves the time-averaged statistical properties
of the generated fading samples. The increased accuracy is
achieved with a relatively small number of sinusoids (e.g.,
N = 8) and without requiring ensemble averaging. Fig. 6
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shows excellent agreement for the probability density function
(PDF) of the fading envelope between the simulated results
and the reference functions. The theoretical PDF of the fading
envelope is given by [35]:

f|C|(c) = 2(1 +K)z. exp
[ −K − (1 −K)z2

]
.Io

[
2z

√
K(1 +K)

]
, z ≥ 0

where Io(·) is the zeroth-order modified Bessel function of
the first kind [36]. The resulting close agreement between the
simulated and reference LCRs for both Rayleigh and Ricean
fading is shown in Fig. 7. The reference LCR of the fading
envelope is given by [35]:

L|C| =

√
2(1 +K)

π
λfD. exp

[ −K − (1 +K)λ2
]

.

∫ π

0

[
1 +

2
λ

√
K

K + 1
cos2 θo. cosα

]

. exp
[
2λ

√
K(1 +K) cosα

−2K cos2 θo. sin2 α
]
dα.
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Fig. 7. Normalized LCR for one block containing 2 × 106 fading samples
with fDTs = 0.01 and N = 8.

Figures 5-7 confirm that the modified updating procedure for
the parameters of the sinusoids has negligible impact on the
important statistical properties of generated fading variates.

IV. COMPACT AND HIGH-THROUGHPUT HARDWARE

IMPLEMENTATION

In typical scenarios, the Doppler frequency fD is signifi-
cantly smaller than the signal sampling rate Fs = 1/Ts. Since
the channel changes only slowly compared to Fs, the fading
channel simulator can update at a much lower sampling rate.
Therefore we propose a time-multiplexed scheme to imple-
ment a compact fading channel simulator. In this approach,
we use shared functional and storage resources to update the
RWPs and also to generate the fading process c[m], resulting
in a significantly smaller hardware implementation compared
to previous simulators [14]–[24].

When compactness is achieved through time-multiplexing,
the raw fading sample generation rate will be reduced pro-
portionally. To compensate for this reduction, we utilize a
linear interpolator to achieve the desired output sample rate.
For accurate linear interpolation, the signal bandwidth should
be small enough that the interpolator response does not sig-
nificantly impact the statistics of the generated samples. More
specifically, if the initial sample rate F̂s ≥ 64× fD is used, a
linear interpolator attenuates the image signals by more than
80 dB with no significant effect on the desired signal.

Fig. 8 shows the datapath for generating the in-phase com-
ponent of the fading process, where the signals are represented
in the 2’s complement fixed-point format Q(WL,WF ), i.e.,
WL-bit words with a WF -bit fraction. For a clearer presen-
tation, we describe the proposed channel simulator datapath
using three processing steps:

(1) Updating the RWPs θ, ϕn and ψn: We define
α̂n[m] = αn[m]/(2π) = (n − θ̂)/(4N), where θ̂ ∈ [0, 1)
and thus α̂n[m] ∈ [0, 1/4). We also define ϕ̂n[m] = (π +
ϕn[m])/(2π) and ψ̂n[m] = (π + ψn[m])/(2π) to be in the
range [0, 1). Note that adding π to the random phases does
not change their statistical properties. Correspondingly, when
implementing Algorithm 1 we changed χ ∈ U(−π, π) to be
χ ∈ U(0, 1). The pseudo-random number generator (PNG) in
Fig. 8 generates uniformly-distributed samples in Q(16, 15)
format. The common size of on-chip memories RAM α, RAM
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Fig. 8. Datapath for generating the in-phase component of the fading process.

ϕ, and RAM ψ is L × N × 16, where L is the number of
independent paths and each 16-bit sinusoid parameter is stored
in 2’s complement format Q(16, 15). For example, utilizing
the 18-Kb on-chip block memories on available Xilinx FPGAs
[37], each one of the parameters α̂n, ϕ̂n, ψ̂n for L = 32
different simulated paths with N = 32 can be stored in one
block memory (BRAM), as shown in Fig 8. L different values
of θ̂ are also stored in a dual-port RAM θ.

(2) Generating the Rayleigh fading process at a low rate:
Based on the discrete-time definitions in (1) and (2), which

operate at a sample rate Fs, we define ĉi[m] operating at a
reduced sample rate F̂s (< Fs) as follows:

ĉi[m] =

√
2
N

N∑
n=1

g
(
f(

1
4
− α̂n[m])

m

64
+ ϕ̂n[m]

)
(3)

where g(x) = cos(2πx) and f(x) = 64 × (fD/F̂s) sin(2πx)
for x ∈ [0, 1/4). Since we chose F̂s ≥ 64 × fD, the value
of f(x) is limited to the range [0, 1]. As shown in Fig. 8,
the values of f(x), for x ∈ [0, 0.25), are precomputed by
uniformly quantizing the domain into 1024 segments and then
storing the function values in ROM f . Note that the inner
sine function in (3) is obtained using the identity cos(2πx) =
sin(2π(1/4−x)). For x ∈ [0, 1/4), 1/4−x can be calculated
using the negation NEG operation. The multiplication of m and
f(·) in (3) can be replaced with a running sum as follows:

f(
1
4
− α̂n[m])m ≈ βin[m] =

m∑
j=1

f(
1
4
− α̂n[j]). (4)

Note that βin[m] can be written in recursive form as βin[m] =
βin[m− 1]+ f(1/4− α̂n[m]) with βin[−1] = 0. With similar
modifications to ĉq[m], the resulting simplified in-phase and
quadrature components can be written in discrete-time as:

ĉi[m] ≈
√

2
N

N∑
n=1

g(βin[m]/64 + ϕ̂n[m]), (5)

ĉq[m] ≈
√

2
N

N∑
n=1

g(βqn[m]/64 + ψ̂n[m]), (6)

where βqn[m] is defined as βqn[m] = βqn[m−1]+ f(α̂n[m])
with βqn[−1] = 0. Our fixed-point simulations show that the
word length of βin and βqn has a significant impact on the
output statistics. Using bit-true simulations we found that the
Q(22, 15) format provides enough accuracy. The 2 × L ×N
values of βin and βqn are stored in RAM β, as shown in Fig.
8. Also, the Cos Module is used to calculate the g(x) function
using look-up tables. The first quarter cycle of the cosine
function is quantized into 1024 segments and the resulting
values are stored in one BRAM. The value of g(x) over
(0, 1) is calculated from these stored values by exploiting the
symmetry of the cosine function. The outputs of the Cos Module

are accumulated to compute the scaled values of (5) and (6),
which are then stored in RAM c.

(3) Interpolation: In this step, fading samples generated at
the reduced rate F̂s are oversampled and interpolated I times
to provide samples at the target sample rate Fs = I × F̂s.
The interpolator requires the discrete difference between two
consequent low-frequency samples y[mI] and y[(m + 1)I],
where m = 0, 1, · · · , to compute the interpolated signal. The
interpolator generates the fading samples y[mI + i], where
i = 0, 1, · · · , I − 1, as follows:

y[mI + i] =
(y[(m+ 1)I] − y[mI])i

I
+ y[mI] (7)



To avoid the multiplication and division operations, I is chosen
to be a power of two. Also, we use an accumulator to
implement (7) as follows:

y[mI + i] =
i∑

j=0

y[(m+ 1)I] − y[mI]
I

+ y[mI]. (8)

The interpolator in Fig. 8 contains a 24-bit accumulator and
one register that holds the input signal for an interval of I
samples. Note that every stream of in-phase and quadrature
samples requires a separate instantiation of the interpolator.
Thus for an L-path simulator, 2L interpolators are required.
A decoder selects which interpolator branch should store the
present output sample from RAM c. The interpolator generates
the final L streams of independent complex Rayleigh fading
samples.

An important property of the proposed architecture is that
since the same datapath is shared to update sinusoid parame-
ters and to superimpose sinusoids, the number N of sinusoids
mainly impacts the size of the memories used to store the
sinusoid parameters. The computational complexity is directly
proportional to the number L of independent faders. For
example, a fading simulator with L = 32 paths, which requires
64 independent interpolators for the in-phase and quadrature
components, uses only 6899 (7%) of the configurable slices,
10 (2%) of the BRAMs, and 1 (< 1%) of the dedicated
DSP48s on a Xilinx Virtex-4 XC4VLX200-11 FPGA while
generating 32×201×106 complex fading samples per second.
The synthesis results show that 6214 out of 6899 (i.e., 90%)
configurable slices used for the entire fading channel simulator
are used by the interpolator. Since a time-multiplexed datapath
is used to generate fading variates at a lower rate, for a
Rayleigh fading channel simulator with a given Fs and fD,
there is an upper bound on the number N of sinusoids and the
number L of paths. Assuming that 64×fD ≤ F̂s < 128×fD,
one can see that

log I =
⌊
log2(Fs/fD)

⌋ − 6 (9)

where F̂s = 2− log I ×Fs. Since L×N ≥ 2log I , using (9) we
can write

2�log2(
Fs
fD

)� ≥ 64 × L×N

With the approximation �log2(Fs/fD)� ≈ log2(Fs/fD) − 1,
we can write

L×N <
Fs

128 × fD
(10)

Equation (10) shows that one can increase the number L
of independent paths and/or the number N of sinusoids for
greater accuracy as long as the datapath for generating the
fading variates at the lower rate F̂s has sufficient clock cycle
budget Fs/(128 × fD).

For a comparison with our best previous FPGA-based
designs, we implemented the fading channel simulator with
different numbers L of paths on a Xilinx Virtex-II Pro
XC2VP100-6. The characteristics of our trial implementations
are shown in Table I. This results show that the proposed

TABLE I
CHARACTERISTICS OF DIFFERENT RICEAN FADING CHANNEL

SIMULATORS

Model [21] [24] [14] This Work This Work
Paths L 32 32 16 32 64

Sinusoids N 8 8 8 32 32
Clock (MHz) 201 201 203 238 238
Output rate 32× 32× 16× 32× 64×

201 201 203 238 238
Slices 97% 87% 32% 15% 29%
Mults. 66% 36% 64% 0.2% 0.2%
BRAMs 65% 79% 48% 2.0% 2%

design is significantly smaller and faster than our previous
designs, while utilizing a greater number N of sinusoids to
achieve more accurate fading variates. For example, compared
to our previous implementation in [24], our new Ricean
channel implementation accommodates twice as many paths
L on the same FPGA, utilizes four times the number of
sinusoids N for improved accuracy, increases the fading
sample generation rate more than twice, utilizes three times
fewer configurable slices, uses 180 times fewer dedicated
multipliers, and requires at least 39 times fewer on-chip block
memories. The increased compactness is mainly due to the
time-multiplexed update procedure for the RWPs and also
the use of a shared datapath for superimposing the sinusoids.
Higher throughput is achieved by using the linear interpolators.
Among various MIMO prototype implementations on FPGAs,
to the best of our knowledge, only a few of them reported the
characteristics of the implemented fading channel simulators.
For example, the implementation of a (4, 4) MIMO channel
on an Altera APEX EP20K1000EBC652-3 in [15] uses 58%
of the logical elements and 17% of the memory bits while
clocking at 50 MHz. Also, the design in [19] can support
MIMO channels with no more than 16 delay paths and the
fading sample generation rate is only three million samples per
second. The design in [19] uses 25% of the logic elements,
40% of the on-chip memory, and 80% of the DSP blocks
on the Altera Stratix-II FPGA. By comparing with these
implementation results, one can see that our proposed channel
simulator is significantly more compact and faster than these
previous designs.

Note that the sample rate of the new fading simulator
depends on the maximum speed of the interpolator stage
if different clock sources are used for the first stage (i.e.,
generating fading samples at F̂s) and the second stage (i.e.,
the interpolator). For example, the interpolator in the proposed
fading channel simulator on a Xilinx Virtex-II Pro XC2VP100-
6 FPGA (for both the L = 32 and L = 64 cases) runs at 243
MHz. Thus the final fading sample generation rate is L× 243
complex-valued fading samples per second.

V. CONCLUSIONS

Using a hardware-accelerated baseband channel simulator
is an attractive way of avoiding the inconvenience and cost of
field trial measurements while still permitting the accurate and
repeatable characterization of wireless systems. We utilized
an improved sum-of-sinusoid (SOS) based model that en-



ables accurate implementations of Rayleigh and Ricean fading
channel simulators. We proposed a new updating procedure
for the sinusoid parameters of the SOS-based fading model,
which allows a significantly more compact implementation
of a high path count Rayleigh and Ricean fading channel
simulator. We also presented a reconfigurable architecture for
the fading channel simulator that has a significantly higher
fading variate generation rate compared to previous simulator
designs. The new design utilizes time-multiplexed resource
sharing to achieve a compact implementation and a simple
linear interpolator that produces the samples at the full output
rate. Within a single Xilinx Virtex-4 XC4VLX200-11, up to
448 different Rayleigh channels can be implemented, gener-
ating 448 × 190 million complex fading variates per second.
Being able to implement an entire frequency-selective MIMO
fading channel simulator on a small fraction of a single FPGA
allows designers to prototype the transmitter and receiver on
the same FPGA and then allow their performance to be verified
under a wide variety radio propagation scenarios.
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