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Abstract—This paper presents a unified architecture for the compact implementation of several key elementary functions, including

reciprocal, square root, and logarithm, in single-precision floating-point arithmetic. The proposed high-throughput design is based on

uniform domain segmentation and curve fitting techniques. Numerically accurate least-squares regression is utilized to calculate the

polynomial coefficients. The architecture is optimized by analyzing the trade-off between the size of the required memory and the

precision of intermediate variables to achieve the minimum 23-bit accuracy required for single-precision floating-point representation.

The efficiency of the proposed unified data path is demonstrated on a common field-programmable gate array.

Index Terms—Floating-point arithmetic, single-precision arithmetic, reciprocal, square root, logarithm, computer arithmetic.
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1 INTRODUCTION

MANY scientific algorithms rely on floating-point repre-
sentations and arithmetic to ensure a sufficiently large

dynamic range. Numerous algorithms have been proposed
previously for implementing key elementary floating-point
functions, such as reciprocal and square root. The major
algorithms fall into two main categories: iterative methods
[1], [2], [3], [4] and noniterative techniques [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20],
[21], [22], [23]. Iterative methods can be subclassified into
multiplicative algorithms and digit recurrence approaches.
The multiplicative algorithms use a series of multiplica-
tions, subtractions, bit inversions, and shifts to iteratively
refine a sufficiently accurate initial guess. The multiplicative
algorithms typically converge at a quadratic rate, which
means that the number of accurate bits in the approximation
roughly doubles at every iteration. In contrast, the sub-
tractive digit recurrence approaches compute the elemen-
tary functions directly and have a linear convergence rate,
with one bit of increased accuracy produced at every
iteration. Due to their relatively long latencies, the sub-
tractive algorithms usually require dedicated hardware [24].
The multiplicative algorithms are better suited for high-
performance computations due to their faster convergence.

Noniterative techniques compute the function value
directly without convergent iterations and can be subdi-
vided into table-bound methods [5], [6], [7], [8], [9],

compute-bound methods [10], [11], [12], [13], and hybrid
methods [14], [15], [16], [17], [18], [19], [20], [21], [22], [23].
Table-bound methods, such as partial product arrays [5],
add-table lookup-add [6], and bipartite tables [7], [8], [9],
which require one or only a few tables and adders, are
inefficient for single-precision computations due to the
rapid growth in the size of the lookup tables (LUTs) with
the accuracy of the result. For example, the bipartite table
method in [7] uses two relatively large tables of sizes of
about 216 � 24 and 216 � 8 bits and a subtractor, but no
multipliers, to achieve single-precision accuracy.

Compute-bound schemes minimize the storage size but
require a relatively large number of multiplications and
additions, resulting in longer execution times. For example,
the rational approximation scheme in [10] requires at least
one division operation and the methods in [11], [12] use a
very small LUT together with square, cubic, or higher
degree polynomial approximations.

Hybrid methods provide high-speed function approxi-
mation by combining relatively small LUTs with the
evaluation of linear or quadratic polynomials, achieving
both a reduction in memory size compared with the table-
bound schemes and significant speedups compared with the
compute-bound methods [25]. For example, [21] and [22],
[23] use first-order and second-order interpolating polyno-
mials, respectively. The designs in [18], [19], [20] use second-
order piecewise polynomial approximations of the functions
based on the Chebyshev approximations, Taylor expansion,
and minmax approximations, respectively.

While most of the published schemes utilize a separate
data path for implementing each elementary function [2],
we propose a unified architecture for the compact and high-
throughput implementation of six key elementary func-
tions. Sharing data-path units can permit extensive hard-
ware reduction and an especially compact transcendental
functional unit (TFU) design. Moreover, a single shared
data path implies the same latency for all function
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approximations, which simplifies the design of the TFU’s
control unit. Our design is based on joint uniform
segmentation and curve fitting approximations to accu-
rately implement the desired elementary functions to
single-precision floating-point accuracy. We use linear and
quadratic polynomials and fully pipelined data paths to
achieve high-throughput implementations. We also com-
pare the accuracy and numerical stability of several
alternative curve fitting algorithms to select a robust
technique. The size of the required memories and the
precision of the shared data-path’s intermediate variables
were optimized using exhaustive simulations across the
approximation interval ½1; 2Þ to ensure 23-bit final accuracy,
to minimize resource requirement, and to maximize the
data throughput.

The rest of this paper is organized as follows: Section 2
briefly reviews the widely used segmentation and curve
fitting techniques for approximating elementary functions.
The numerical stability of alternative curve fitting techniques
is investigated. We propose a numerically stable solution for
the accurate approximation of six important elementary
functions. Section 3 describes the proposed shared data-path
architecture. Section 4 compares the proposed technique with
previous high-throughput techniques, including designs that
use a separate data path for implementing each function and
designs that use a unified architecture for implementing
multiple different elementary functions. Finally, Section 5
makes some concluding remarks.

2 SEGMENTATION AND CURVE FITTING

TECHNIQUES

Normalized IEEE floating-point numbers are given in
ð�1Þsx2e format where s 2 f0; 1g is the sign, the mantissa
x lies in 1 � x < 2 with an implicit leading 1 (only the
fractional 23 bits are given), and e is the signed integer
exponent. We will denote by fðxÞ any one of the elementary
functions x�1, x0:5, x�0:5, logðxÞ, lnðxÞ, and 2x over the
interval of interest x 2 ½1; 2Þ. Our method focuses on
function approximation within this predefined input inter-
val. The input domain differs from the domains ½1; 4Þ and
½0; 1Þ that are normally used for square root and exponen-
tiation, respectively. Reducing the argument x to the input
interval of 1 � x < 2 and then reconstructing the value fðxÞ
is assumed to be performed before and after function
approximation, respectively, using conventional techniques
[19], [23]. The common domain simplifies the design of a
shared data path for all six functions.

For an efficient approximation of function fðxÞ, instead
of using a single polynomial with a relatively large degree,
the interval x 2 ½1; 2Þ is partitioned into subintervals
(segments). Different functions may require different
segmentations. For example, in [26] we used a hybrid
segmentation (i.e., a combination of linear and nonlinear
segmentations) for fðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 lnðxÞ

p
. For clarity, Fig. 1

plots fðxÞ for four of the six elementary functions over
½1; 2Þ. Since over this interval all six functions are well
behaved and slowly varying, we can use a uniform domain
segmentation. We use n ¼ 2m segments for each fðxÞ
where the m most significant bits of the normalized
mantissa (i.e., d ¼ x� 1) are used as a segment index.

Then, a low-degree fitting polynomial gðxÞ ¼
Pp

j¼0 ajx
j can

be used to approximate fðxÞ within each segment. After
defining gðxÞ for each segment (i.e., finding its coefficients),
the value of fðxiÞ can be approximated by calculating the
value of the fitting polynomial gðxÞ at x ¼ xi.

Curve fitting is the process of finding the coefficients aj of
each gðxÞ using a given set of distinct data points ðxi; yiÞ,
where i ¼ 0; 1; . . . ; n and n > p. One standard optimization
method for finding the coefficients of gðxÞ is least-squares
regression [27]. In the regression method, the coefficients aj
of the best fitting curve gðxÞ ¼

Pp
j¼0 ajx

j are obtained by
minimizing the sum of squared residuals (or deviations)
from a given set of n data points ðxi; yiÞ. For a given set of
data points, the best fitting curve is generally not unique and
different fitting curve choices are possible depending on the
maximum allowed deviation of the fitting curve gðxÞ from
fðxÞ. The approximation error can be defined as follows:

eðaÞ ¼
Xn
i¼1

r2
i ðaÞ ¼

Xn
i¼1

yi �
Xp
j¼0

ajx
j
i

 !2

: ð1Þ

Minimization of (1) produces a set of normal equations (i.e.,
a set of linear equations in the polynomial coefficients),
which are solved to yield an estimate of aj, where
j ¼ 0; . . . ; p. When the number n of given data points is
more than the number of unknown coefficients (i.e.,
n > pþ 1), the set of normal equations is an overdetermined
system of n linear equations in pþ 1 unknowns aj. We
evaluated the numerical stability of four different algo-
rithms that optimize the polynomial coefficients to mini-
mize the error in (1), as reviewed below.

One optimization technique is to form pþ 1 gradient
equations with respect to each parameter (i.e., @e=@aj) and
then solve for the zeros. In this case, a set of normal equations
is obtained, which can be written in matrix notation as
ðXTXÞ~a ¼ XTy, where X is an n� ðpþ 1Þmatrix. When the
pþ 1 columns of matrix X are linearly independent (i.e., X is
positive definite and has full rank) and n > pþ 1 (as
otherwise the matrix XTX is not invertible), the above set of
normal equations has the unique solution ~a ¼ ðXTXÞ�1XTy,
which yields the vector ~a ¼ ~a0; . . . ; ~ap containing the optimal
coefficient values.

The second standard technique for finding the minima
of the quadratic error function (1) is to use Newton’s
iterative optimization equation akþ1 ¼ ak � dk, where k � 0
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Fig. 1. Plots of 1=x,
ffiffiffi
x
p

, 1=
ffiffiffi
x
p

, and lnðxÞ over x 2 ½1; 2Þ.



denotes the iteration number and the vector increment dk is
the shift vector. After choosing sufficiently accurate initial
estimates for the coefficients [27], their values are refined
by successive approximations of

dk ¼
�
HeðakÞ

��1reðakÞ;

where reðakÞ and HeðakÞ denote the gradient and Hessian
of eðakÞ, respectively. Another technique for finding the
minimum of a sum of squared functions, without the need
for calculating the second-order Hessian matrix, is the
Gauss-Newton algorithm [27]. The Gauss-Newton’s step dk
can be computed from

dk ¼
�
JTk Jk

��1�
JTk r

�
;

where Jk ¼ JgðxkÞ is the n� ðpþ 1Þ Jacobian matrix of gð�Þ
with respect to a.

We found that when the number n of segments is chosen
to be much larger than the polynomial degree (e.g., the
interval ½1; 2Þ is segmented into 1,024 segments and linear
or quadratic approximations are chosen), then all three
optimization algorithms are unstable when inverting
matrices XTX, JTk Jk, and the Hessian matrix. Intuitively,
when the intervals are very narrow (in our case, for
example, only 2�10 apart), then the coefficients differ only
very slightly in value, making the matrices ill conditioned
(i.e., close to a singular matrix). Hence, the least-squares
estimate amplifies the approximation errors leading to
inaccurate results [28]. Moreover, we found that the double-
precision floating-point arithmetic supported by many
computers is not sufficient to accurately represent the
intermediate values of the variables in these optimization
algorithms. Newton’s iterative approach has the additional
problem that when there are multiple local minima in (1),
the algorithm may fail to converge to the global minimum.
A more robust algorithm for finding the global minimum of
the sum of squares in (1) is to use regularization. More
specifically, we selected the Levenberg-Marquardt regular-
ization scheme in which the vector increment dk can be
calculated as

dk ¼
�
JTk Jk þ ��

��
JTk r

�
;

where � is the damping parameter and � is a positive
diagonal matrix [29]. This technique provides a robust
solution for finding the coefficients of approximating poly-
nomials while minimizing the error function (1).

After approximating the values of the coefficients aj of
each polynomial for the n different segments of fðxÞ, they are
stored in an on-chip memory. To minimize the size of this
memory, we need to minimize the number of segments and
the word length of the computed coefficients. For the most
compact possible design, we also need to find the minimum
precision of the intermediate signals in the polynomial data
path that achieves 23-bit-accurate function values.

3 OPTIMIZATION OF THE UNIFIED ARCHITECTURE

The accuracy of a polynomial approximation depends on
the size of the interval over which the approximation is
made, the order of the polynomial, and the method for

computing the coefficients. The minimum number of
segments is determined by the degree of the approximation
and by the required accuracy. The order p of the segment
polynomial directly impacts the computational complexity,
the number of coefficients, and the data-path latency. For
example, for a desired maximum approximation error,
increasing the order p of the polynomial increases the
number of coefficients per segment, increases the number of
adders and multipliers, and increases the latency; however,
the number of segments can also be reduced, which reduces
the required coefficient memory size. Hence, the maximum
acceptable approximation error and the computational
complexity define a trade-off between the number 2m of
equal segments and the degree p of the polynomial.

To provide a quantitative foundation for the analysis
of the design trade-offs, such as the size of the on-chip
memories and the precision of coefficients and intermediate
signals, we implemented both fixed-point and floating-
point arithmetic and logical libraries in Mex-C [30]. These
libraries include parameterizable modules, with variable
exponent and mantissa bit-widths, that provide a flexible
simulation environment for the bit-true comparison of
approximated values of fðxÞ with accurate function values.
The minimum number of segments and the precision of the
polynomials coefficients and intermediate signals were
obtained through exhaustive simulation across the approx-
imation interval x 2 ½1; 2Þ at a precision of 2�23 to minimize
the hardware requirements while guaranteeing accurate
23-bit results (i.e., achieving absolute errors of less than
1:192e�7). Minimizing the word length of the intermediate
signals reduces the size of the logic blocks used in the
polynomial evaluation data path. Minimizing the polyno-
mial coefficient word lengths further reduces the size of on-
chip memories and also the size of logic blocks.

Since the size of the required on-chip memory grows
exponentially with m, minimizing m is crucial to minimiz-
ing the hardware requirements of the function implementa-
tion. Our exhaustive simulation starts by minimizing the
value of m for a predefined polynomial order p so that the
approximation is accurate to the target precision. In this
step, all variables (i.e., the polynomial coefficients and the
intermediate signals of the polynomial evaluation data path)
are considered to have full precision. After the minimum
value of m has been determined, in the second step, the
word lengths of the intermediate signals and polynomial
coefficients are jointly minimized such that the final error is
still kept less than the 2�23 worst-case bound. Tables 1 and 2
present the optimized characteristics of the six elementary
functions obtained using our bit-true exhaustive simulation-
based approach assuming linear and quadratic interval
polynomials, respectively. The row labeled “Data-path
precision” gives the precision of the intermediate variables
used in the arithmetic, logical, and routing modules. The
precisions of the polynomial coefficients and data paths are
denoted by (WL,WF), where WL and WF denote the word
length and the fraction length of the variables, respectively.
The accuracies yielded by such an optimized configuration
are also shown. Note that the number of stored bits in
coefficient LUTs is not identical with the precision of
polynomial coefficients as the range of the coefficient values
sometimes allows removal of the most significant bits. These
implied constant bits are appended to the LUT contents
when they are read in the polynomial data path.
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Fig. 2 shows the data path of the fully pipelined first-
order (a) and second-order (b) polynomial implementations
using Horner’s rule. The LUTs are addressed using the
m most significant bits of the normalized mantissa. To
minimize the required LUT size, the Coefficient adjustment
block prepends any constant most significant bits of the
polynomial coefficients to the values read from the LUTs.
The data paths in Fig. 2 utilize small first-in first-out (FIFO)
buffers to permit fully pipelined implementations which,
after some fixed latency, generate one new result per
clock cycle. The labels Dmem, Dadd, and Dmul in Fig. 2 denote
the corresponding latencies of the memory, adder, and
multiplier, respectively. The formats (including the preci-
sions) of the intermediate data-path signals in Fig. 2 are
determined by the largest word lengths and fraction lengths

that ensure perfect accuracy at the required precision for all
six functions. The Rounding block transforms the approxi-
mated values into 23-bit rounded results in order to limit the
maximum error to half a unit in the last place (ulp). The
rounding step ensures that for a given function, the data
path will always produce the same results as the other
designs that have the same floating-point format.

To further reduce the size of the arithmetic modules in
the two data paths in Fig. 2, we normalized the value of
the calculated polynomial coefficients as follows: Let
x ¼ 1:d1d2 . . . dmdmþ1 . . . dn, where dh ¼ d1d2 . . . dm and dl ¼
dmþ1dmþ2 . . . dn denote the m most significant and ‘ ¼
n�m least significant bits of d ¼ x� 1, and the full
fraction width is n ¼ mþ ‘ ¼ 23. Thus, x can be specified
as 1þ

Pm
j¼1 dj2

�j þ
P23

j¼mþ1 dj2
�j. Since dh is used to

address the coefficient memory, dl can be shifted left
m bits, where the multiplication of dl by 2m is compensated
for by scaling the coefficients of the polynomials.

As shown in Tables 1 and 2, when using a quadratic
polynomial, a smaller memory is sufficient at the expense of
one additional adder and multiplier compared with the
linear polynomial implementation (see Fig. 2). Moreover, the
latency of the quadratic implementation is longer than the
linear implementation. To avoid performing the two serial
multiplications and additions used in the conventional
implementation of a quadratic polynomial, various techni-
ques have been proposed for a faster evaluation with a
significant reduction in latency [18], [19], [31]. For example,
the method in [18] uses specially designed multipliers and
redundant arithmetic and the design in [19] uses a specialized
squaring unit, multioperand adders, and also specially
designed multipliers. Our bit-true simulation environment
and our design methodology are independent of the
implementation details and can be efficiently used to
optimize any polynomial-based function approximation data
paths. Our strategy has been to prefer generic designs so as to
ensure portability and validity.

4 COMPARATIVE ANALYSIS

Our design methodology enables compact and versatile
implementations of shared-data-path multifunction float-
ing-point units on custom VLSI and configurable hardware.
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TABLE 1
Implementation Characteristics Assuming Linear Polynomials

TABLE 2
Implementation Characteristics Assuming Quadratic Polynomials

Fig. 2. Block diagram of the fully pipelined (a) first-order and (b) second-
order polynomial implementations.



In this section, we present the implementation results for
the proposed architecture on a contemporary Xilinx Virtex4
field-programmable gate array (FPGA) [32]. We compare in
detail our designs with other high-throughput designs with
respect to the reciprocal and reciprocal square root func-
tions. Comparisons with implementations of the other four
operations would produce similar observations.

The comparison is organized in two parts. We start by
comparing with designs that use separately designed data
paths for implementing reciprocal and (reciprocal) square
root. One widely used technique for approximating ele-
mentary functions is the Newton-Raphson (NR) method [1].
This method adopts an initial approximation and improves

upon it by a converging algorithm. Approximating the
reciprocal 1=x using the quadratically converging
NR recurrence can be derived from the Taylor series
expansion as xiþ1 ¼ xið2� x xiÞ. Fig. 3a shows the fully
pipelined data path of the resulting NR reciprocal NR+REC
implementation when no iterations are required to achieve
the desired accuracy. Here, 2m sufficiently accurate starting
reciprocal estimates between ð0:5; 1� are precomputed and
stored in an LUT to obtain a more accurate second estimate.
In this data path, the difference 2� dxi is replaced with a
simple bit inversion of dxi, performed by the Bit inversion
block. Dmulk and DbitInv denote the latencies of multiplier k
and the Bit inversion block, respectively, which are used to
define FIFO latencies.

Hung et al. [14] also use a Taylor series expansion for
approximating the reciprocal operation in which 1=x is
obtained as ðxh � xlÞ=x2

h where xh denotes the (mþ 1)st most
significant bits of x (i.e., xh ¼ 20 þ 2�1d1 þ . . .þ 2�mdm and
1 � xh � 2� 2�m) and xl ¼ x� xh (i.e., 0 � xl < 2�m). Fig. 3b
shows the corresponding data path HUNG+REC that
approximates the reciprocal of x using only one subtractor,
one multiplier, and one on-chip memory to store 1=x2

h and a
small FIFO (of latency Dsub �Dmem) to support a fully
pipelined implementation. An improved scheme that
requires a smaller memory is proposed by Jeong et al. [15].
This scheme is based on the modified Taylor expansion and
approximates 1=x asAð2�AxÞwhereA ¼ ðxh � xlÞ=x2

h. The
data path for Jeong’s approach (JEONG+REC), shown in
Fig. 3c, is essentially the same data path as the NR+REC data
path with A as the initial approximation.

Ito et al. [33] proposed an efficient initial approximation
scheme using a piecewise linear approximation for the
reciprocal operation. This initial approximation can be
combined with a multiplicative iterative technique, such as
the NR algorithm. This approximation was further improved
to remove the addition in the linear approximation by
slightly modifying the operands used in the initial reciprocal
approximation. This modification also reduces the LUT size
as only one coefficient, instead of two, has to be stored.
Hence, Ito’s data path NR+REC+ITO, as shown in Fig. 3d,
uses the same NR+REC data path (with possibly different
precisions for the intermediate signals, as shown later) and
utilizes one additional multiplier for the modified initial
linear approximation.

Table 3 summarizes the implementation characteristics
of the four comparable reciprocal implementations on a
Xilinx Virtex4 LX200FF1513-11 FPGA. The size of the LUTs
and the precision of intermediate signals were optimized
using bit-true exhaustive simulation. The data paths all
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Fig. 3. Four fully pipelined data paths of comparable multiplicative
reciprocal implementations: (a) NR+REC, (b) HUNG+REC [14],
(c) JEONG+REC [15], and (d) NR+REC+ITO [33].

TABLE 3
Characteristics of the Optimized Data Paths for Reciprocal on a Xilinx Virtex4 LX200FF1513-11 FPGA



used pipelined arithmetic modules to maximize perfor-
mance. The row labeled “Latency (CLKs)” gives the number
of clock cycles required to obtain a result after applying the
corresponding input to a data path. An entry of the form
kðc1; . . . ; cbÞ in Table 3 denotes k instances of the adder
or multiplier module, where the input operands are
c1; . . . ; cb bits wide, respectively. As shown in Table 3, the
HUNG+ REC scheme requires the most memory while the
JEONG+REC method requires the greatest number of
multipliers. The NR+REC+ITO data path provides a good
balance between resource utilization, latency, and through-
put. Note that the implementation details may vary as a
designer may choose to implement the arithmetic modules
using configurable slices and/or the dedicated resources
now available on many FPGAs. Similarly, one may choose
to implement relatively small LUTs on distributed mem-
ories and larger ones on dedicated memory blocks.

For approximating 1=
ffiffiffi
x
p

, the NR algorithm provides the

iterative equation xiþ1 ¼ 0:5� xið3� x x2
i Þ [2]. The corre-

sponding fully pipelined data path NR+ISQT, when no

iterations are required to obtain the desired accuracy, is

shown in Fig. 4a. Note that subtracting from three was

approximated by bit conversion since 3� x x2
i ¼ 1þ ð2�

x x2
i Þ and the term 2� x x2

i corresponds to a two’s

complement, which can in turn be approximated by bit

inversion. Another efficient technique for estimating 1=
ffiffiffiffiffi
d0

p

is to use the binomial series expansion, also called the

Goldschmidt (GS) algorithm [4]. This scheme starts with an

initial approximation Y0 to 1=
ffiffiffiffiffi
d0

p
. Then, the product gn ¼

Y0Y1 . . .Yn will approach 1=
ffiffiffiffiffi
d0

p
. Each GS square root

iteration involves computing dj ¼ dj�1Y
2
j�1 and Yj ¼ 1þ

0:5ð1� djÞ, where the reciprocal square root approximation

is updated by gj ¼ gj�1Yj. Fig. 4b shows the fully pipelined

data path GS+ISQT of the GS reciprocal square root

algorithm when no iterations are required to obtain the

desired accuracy. The SHR+1 block implements a logical

shift right and increment operation. Using the same

definitions for xh and xl, Hung et al. also proposed theffiffiffi
x
p
� xðxh�xl=2Þ

x1:5
h

approximation for square root [14]. The

corresponding data path HUNG+SQT is shown in Fig. 4c.

Fig. 4d shows Ito’s approach (NR+ISQT+ ITO) for estimat-

ing the reciprocal square root. It uses the same NR+ISQT

data path but requires one additional multiplier for the

modified initial linear approximation.
Table 4 summarizes the characteristics of the optimized

data paths for high-throughput (reciprocal) square root
implementations on a Xilinx Virtex4 LX200FF1513-11 FPGA.
As shown in Table 4, the HUNG+SQT scheme requires the
largest memory and the NR+ISQT+ITO method requires the
fewest memories and the greatest number of multipliers.
Note that the characteristics presented in Tables 3 and 4
were obtained assuming that the results had to be correct to
one ulp (i.e., less than one ulp deviation from the infinitely
precise result for an arbitrarily precise real input).

The second group of designs uses a unified architecture to
implement multiple elementary functions [18], [19], [20], [22].
Piñeiro et al. [18] proposed an enhanced minmax quadratic
approximation and an optimized evaluation of the second-
order polynomial. The coefficients were approximated using
the symbolic algebra system Maple [34]. The work by

Schulte and Swartzlander [19] also used a uniform segmen-
tation and polynomial approximation (SCH+REC+ISQT) in
which the coefficients for each segment were determined
using a Chebyshev series approximation. The polynomial
terms are generated in parallel and summed using a
multioperand adder. Ercegovac et al. [20] proposed a three-
step method (ERC+REC+ ISQT) based on argument reduc-
tion, evaluation using a few Taylor series terms, and then
postprocessing. In the argument reduction step the input is
scaled to be close to one, and after evaluation of the function
using a few Taylor series terms, the result is postprocessed.

In Schulte’s scheme, the size of the required memory
(see Table 2 in [19]) using a linear approximation that
produces exactly rounded results is actually too large (i.e.,
218 � 57) to fit on a currently available FPGA. Thus, we
present the characteristics of this method utilizing a
quadratic polynomial approximation. Table 5 presents the
characteristics of the data paths for the reciprocal and
reciprocal square root functions implemented using Erce-
govac’s scheme, the quadratic polynomial using Schulte’s
approach, and our linear and quadratic polynomial im-
plementations. As shown in Table 5, when using quadratic
polynomials, a smaller memory is required at the expense
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Fig. 4. Four fully pipelined data paths of comparable multiplicative

(reciprocal) square root implementations: (a) NR+ISQT, (b) GS+ISQT,

(c) HUNG+SQT, and (d) NR+ISQT+ITO.



of longer latency compared to the linear polynomial
implementation. The implementation results in Table 5
show that our two shared data-path designs require
significantly fewer adders, multipliers, and configurable
slices than the two other proposed techniques. Our
quadratic polynomial approximation that produces exact
results also requires 1.4 times fewer memory bits for
commonly supported functions than the unified designs in
[18] that produce results with an accuracy of one ulp (see
Table 2 in [18]). Even though the design in [20] requires
fewer memory bits than the other three designs in Table 5,
it uses the greatest number of configurable slices and
dedicated multipliers and it also has the longest latency.

The sum of the required resources for implementing just
the reciprocal and square root using the multiplicative
techniques, whose characteristics are shown in Tables 3 and
4, is also significantly more than the resources required by our
two proposed schemes. While each function requires a
separate memory to store the polynomial coefficients, sharing
a single shared data path among all functions produces an
especially compact implementation. Note that our proposed
linear and quadratic designs both support more than just the
reciprocal and square root functions and can be easily
extended to implement other elementary functions, such as
exponentiation and trigonometric functions.

5 CONCLUSIONS

This paper described an efficient scheme, based on uniform
domain segmentation and curve fitting, that yields espe-
cially compact and accurate implementations of various
widely used elementary functions to single-precision

floating-point accuracy. The same data path can be used to
produce 23-bit accurate results for the six elementary
functions x�1, x0:5, x�0:5, logðxÞ, lnðxÞ, and 2x over the
interval x 2 ½1; 2Þ. The proposed approach is applicable to
many other nonlinear functions such as trigonometric
functions and exponentiation.

We used parameterized fixed-point and floating-point
routines to optimize the size of the memory blocks and
minimize the word lengths of the intermediate variables.
Exhaustive bit-true simulations confirmed that the proposed
designs provide the 23-bit accuracy required for single-
precision floating-point arithmetic. Our implementation
results for a Xilinx FPGA show that our proposed architec-
ture requires significantly fewer logic resources (e.g., for
adders, registers, and routing), and uses fewer dedicated
multipliers than previously proposed designs. Our scheme
also provides higher throughput and smaller latency than
other proposed approaches. One may choose either the
proposed linear approximation (for shorter latency) or the
proposed quadratic implementation (for smaller memory
space) based on the available configurable logic slices and
dedicated memory blocks. The new unified architecture for
implementing multiple elementary functions in single pre-
cision should be attractive for applications that require both
high performance and flexible floating-point unit designs.
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