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Abstract—A compact, fast, and accurate realization of a digital
Gaussian variate generator (GVG) based on the Box–Muller al-
gorithm is presented. The proposed GVG has a faster Gaussian
sample generation rate and higher tail accuracy with a lower hard-
ware cost than published designs. The GVG design can be readily
configured to achieve arbitrary tail accuracy (i.e., with a proposed
16-bit datapath up to 15 times the standard deviation ) with only
small variations in hardware utilization, and without degrading
the output sample rate. Polynomial curve fitting is utilized along
with a hybrid (i.e., combination of logarithmic and uniform) seg-
mentation and a scaling scheme to maintain accuracy. A typical
instantiation of the proposed GVG occupies only 534 configurable
slices, two on-chip block memories, and three dedicated multipliers
of the Xilinx Virtex-II XC2V4000-6 field-programmable gate array
(FPGA) and operates at 248 MHz, generating 496 million Gaussian
variates (GVs) per second within a range of 6 66 . To accurately
achieve a range of 9 4 , the GVG uses 852 configurable slices,
three block memories, and three on-chip dedicated multipliers
of the same FPGA while still operating at 248 MHz, generating
496 million GVs per second. The core area and performance of a
GVG implemented in a 90-nm CMOS technology are also given. The
statistical characteristics of the GVG are evaluated and confirmed
using multiple standard statistical goodness-of-fit tests.

Index Terms—Box–Muller (BM) algorithm, field-programmable
gate array (FPGA), Gaussian noise generator (GNG), low bit-error
rate simulation, random number generation.

I. MOTIVATION

SEQUENCES of random variates with a Gaussian probability
density function (PDF) are frequently required to model

noisy natural phenomena. For example, in communications it
is standard practice to use additive white Gaussian noise chan-
nels (AWGNs) and multipath Rayleigh fading channels. One
practical application of Gaussian variates (GVs) is to evaluate
the performance of communication systems. A communication
system can be characterized through the bit-error rate (BER)
versus signal-to-noise ratio (SNR) relationship, which for high
SNR regions (and hence very low BERs) requires long-running
Monte Carlo (MC) simulations. Although techniques such as im-
portance sampling have been used to reduce the simulation time,
these schemes are not general enough to be applicable to many
problems [1]. For example, consider a digital communication
system that is designed to achieve a BER of no more than 10 .
This means that on average, 10 symbols must be processed for
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each erroneous symbol in a MC simulation of the system. One
usually requires at least 100 such error events if the BER is to be
estimated with reasonable statistical significance. In addition,
approximately 10 samples per symbol interval are typically
required to represent waveforms in the simulation. Thus, roughly
10 samples must be processed. The generation of 10 GVs,
using an optimized software simulator written in , takes about
2.5 h on a dual core Pentium processor running at 3.0 GHz with
a 1-MB L2 cache. By extrapolation, the generation of 10 GVs
would take about 27 000 years. Note that some recent standards
give maximum allowable BERs of only 10 for specified
SNRs (e.g., IEEE 802.3 10 Gbit/s Ethernet). Thus, maximizing
the achievable GV generation rate is crucial for validating the
BER performance of upcoming systems, and software-based
GV generation is no longer adequate.

On the other hand, evaluating a communication system at
a BER of 10 implies that approximately one in every 10
received bits should be errored. In a typical binary phase-shift
keying (BPSK) communication system, the inverse of the
Gaussian error function for 10 [2] is a value that approaches
7.0. This means that random variates near the center of the
distribution do not contribute significantly to the probability of
error since the small corresponding signal deviations are readily
tolerated by any system with that low a BER. Rather, it is the GVs
with a value of or larger, where is the standard deviation
of the Gaussian distribution, that will be the dominant source of
errors. Therefore, for an MC simulation of a low BER system,
the PDF of generated random numbers must be especially close
to the Gaussian PDF at the high regions (the tails of the PDF).

Hardware-based Gaussian variate generators (GVGs) using
analog devices [3]–[5] and digital components [6]–[20] have
shown significant speedups compared to software implemen-
tations. However, digital implementations tend to be more de-
sirable due to their predictable and controllable behavior, and
because they can reproduce exactly the same pseudorandom se-
quence of variates in successive runs. Field-programmable gate
arrays (FPGAs) are increasingly used as a prototyping platform
for digital designs. In addition to their low cost compared to
custom integrated circuits, the user-programmability of FPGAs
facilitates debugging and design characterization, which can re-
duce the total design time significantly.

The fast and accurate GVG that we propose below utilizes
a relatively small proportion of a typical contemporary FPGA.
Various objectives have been considered when designing the
GVG, as shown in the following.

• Tail Accuracy: The normal distribution is an open-ended
distribution in which values of increasing magnitude occur
with increasingly small probabilities. A GVG for low BER
characterization must be able to generate GVs accurately
especially at the high values. The proposed design uses
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polynomial curve fitting [21] and a hybrid (i.e., logarithmic
and linear) domain segmentation and scaling scheme. This
approach can efficiently achieve accurate Gaussian statis-
tics deep into the distribution tails.

• Hardware Efficiency: Ideally, a hardware realization
should minimize the number of required FPGA resources
while achieving an acceptably high variate generation rate.
Compactness is an important factor when the available
hardware resources are especially limited, such as in a
low-density FPGA.

• Flexibility: The design should be parameterizable to gen-
erate GVs within multiple standard deviations of the mean
(right into the tails of the distribution). It is also important
that the GVG be scalable to increase the output rate with
multiple instantiations of the GVG.

• Portability: The design should preferably avoid exploiting
device-specific features of FPGAs. The resulting more
portable register transfer level design should be synthe-
sizable for different hardware platforms and semicustom
silicon technologies.

• Statistical Accuracy: The quality of the output variates
should be supported by various standard goodness-of-fit
statistical tests, such as statistical independence and small
deviation from the ideal Gaussian PDF.

The key contribution of this paper is a compact and accu-
rate synthesizable GVG core that can be configured to generate
16-bit GVs in two’s complement fixed-point format for arbitrary
maximum deviations into the tails of the distribution. The rest
of this paper is organized as follows. Section II reviews sev-
eral typical algorithms for generating GVs and compares re-
lated work on digital GVG implementations. Section III eval-
uates different pseudorandom number generators (PNGs) used
in recently disclosed GVG designs and compares their statis-
tical properties. Section IV describes tradeoffs involved in im-
plementations of the Box–Muller (BM) algorithm. Section V
presents the realization of the proposed scheme and discusses
implementation results. Section VI is dedicated to the analysis
of goodness-of-fit tests and simulation results. Concluding re-
marks appear in Section VII.

II. GVG ALGORITHMS AND RELATED WORK

Among the many proposed algorithms [2], [6], [9], [22]–[28]
for generating GVs, the digital approaches [7], [13] are typ-
ically based on transformations of uniform distributions [29].
These algorithms include various rejection-acceptance methods
[24], [27], [30]–[32], the BM method [22], and the inversion
method [28].

The rejection-acceptance methods, including the polar
method [31] and the Ziggurat algorithm [27], have been gener-
ally used in software implementations (e.g., the random number
generator libraries in MATLAB). Due to conditional if-then-else
assignment instructions, the output rate is not constant and
hence such methods have received less attention as the basis
for efficient hardware implementation. Implementation of the
polar method in [11] uses a first-in first-out (FIFO) buffer
to provide GVs at a constant output rate. A hardware-based
implementation of a GVG based on the Ziggurat method is
described in [16].

The BM algorithm [22] has been widely used to transform
pairs of uniformly distributed numbers into samples from a 2-D
bivariate normal distribution. The inputs to the BM algorithm
are two independent uniformly-distributed pseudorandom num-
bers (PNs), . The outputs are two independent
samples and , from a zero-mean, unit-variance Gaussian
distribution . The transformation involves multiplying

by and to yield
and , respectively. We will use to denote the implemented
sinusoidal function, or . Digital implementations of
high-quality PNGs and accurate realizations of the required log-
arithm, square root, and trigonometric functions have been in-
vestigated extensively over the last three decades [33]. Conse-
quently, the BM transformation has been used in many FPGA
[8], [10], [12], [14]–[20] and parallel processor GVGs [34].

The inversion method is a standard approach for generating
random variates with arbitrary probability density distributions
[28]. To generate GVs, it transforms uniform random variables

into Gaussian variates by approximating the non-
decreasing inverse of the Gaussian cumulative distribution func-
tion (CDF) as . Since there is no closed-form ap-
proximation for , the GVG in [35] uses a lookup table
to store the CDF inverse. This method requires a large memory
to generate accurate GVGs at the tails of the Gaussian distribu-
tion. The GVG in [36] uses linear interpolation to approximate
the inverse of the Gaussian CDF while requiring less memory.
A more efficient approach is proposed in [20] that uses nonuni-
form segmentation of to more accurately approximate
the Gaussian distribution at the tails.

Another scheme is based on the Wallace method [26], where
new GVs are generated by applying linear transformations to a
pool of Gaussian samples. Due to the inherent feedback in this
method, unwanted correlations can occur between successive
transformations [15]. Using proper parameter selection to min-
imize the correlation effects, a hardware-based GVG-based is
proposed in [15].

To choose an appropriate algorithm for digital hardware
implementation, compromises must be made between the sim-
plicity of the algorithm, the maximum error of the approxima-
tions, the robustness with respect to the distribution parameters,
and the efficiency (minimum resource requirements, maximum
output rate, and latency). For example, the output rate of the
inversion-based scheme is half that of the BM scheme; however,
it can exploit the symmetry of to implement a more
compact GVG without the need to implement trigonometric
functions. On the other hand, trigonometric functions, such as
sine and cosine, can be implemented relatively accurately in a
small fraction of an FPGA. One may choose the BM algorithm
and implement efficiently, along with trigonometric
functions, to increase the output sample rate. A more detailed
comparison of various GVG algorithms can be found in [29]
and [37].

Characteristics of different hardware-based GVGs are given
in Table I. Table II summarizes the major characteristics of var-
ious disclosed GVG implementations based on the BM method.
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Fig. 1. 2-D scatter plot of 10 PNs pairs (u ; u ) generated with (a) a 52-bit LFSR with primitive polynomial p(x) = x + x + 1 and (b) a CTG with
� = 2 [48], when a small portion of the u -axis is magnified.

TABLE I
POLAR-BASED [11], ZIGGURAT-BASED [16], WALLACE-BASED [15], AND

INVERSION-BASED [20] GVG DESIGNS

Reference [11] used the Altera Mercury EP1M120F484C7 FPGA; the three

other designs used a Xilinx Virtex-II XC2V4000-6 FPGA.

TABLE II
SOME PUBLISHED FPGA IMPLEMENTATIONS OF

GVGS BASED ON THE BM METHOD

Reference [10] used the Altera Flex10KE FPGA; the four other designs

used a Xilinx Virtex-II XC2V4000-6 FPGA.

III. CLOSER LOOK AT PNGS

Using the BM algorithm, the normality of the resulting dis-
tribution depends on the statistical properties of the PNGs (how
closely they resemble truly random sequences) and on the accu-
racy of the and computations. The class of linear PNGs
has been used widely in many applications for several decades.
However, many linear PNGs that perform well in standard sta-
tistical tests for randomness are known to be inadequate for MC
simulations [38], [39]. Linear PNGs have two main deficien-
cies. First, a regular lattice structure may be present in the -tu-
ples constructed from successive random numbers [40]–[42].
Second, they tend to produce correlated low-order bits as well as

TABLE III
PNGS USED IN SOME PUBLISHED GVG DESIGNS

long-range correlations, especially for intervals that are a power
of two [43]–[45].

Even though linear PNGs have inferior statistics, linear feed-
back shift registers (LFSRs) have been widely used in many
hardware applications. For example, the GVG in [12] uses 50
60-bit LFSRs operating in parallel with different initial seeds
to generate PNs within (0,1). The hardware-based GVG in [8]
also uses a multiple-bit leap-forward LFSR (LF-LFSR) [46].
Fig. 1(a) shows the 2-D scatter plot of 10 PNs pairs
generated using a 52-bit LFSR with the primitive polynomial

used in [17] when a small portion of the
-axis is magnified. A lattice structure is clearly visible for this

LFSR. Hence, LFSRs and parallel LFSR implementations may
not be adequate for MC simulation [47].

One general recommendation for using linear PNGs is that
the period length should be chosen to be much larger than the
number of random numbers required by the MC simulation [39],
[43]. In fact, based on empirical experiences, the square root of
the period length of the linear PNG has been reported to be a pru-
dent upper bound for the usable sample size [44]. Rather than
implementing a single linear PNG component with a very long
period (e.g., or more), several simple PNGs that are
chosen properly and allow for very fast implementation, such as
Tausworthe generators (TGs) [49], can be combined. The period
of a suitably combined generator will be the product of the pe-
riods of its components [44]. Moreover, a combined generator
yields sequences that have much less regular structure than the
corresponding sequences of their individual component genera-
tors [48], while running almost as fast as the component gener-
ators. Table III gives the characteristics of the LFSRs and com-
bined TGs (CTGs) used in different recently published GVGs.
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TABLE IV
MAXIMUM ABSOLUTE VALUE OF A GV FOR VARIOUS PRECISIONS OF u

Even though a lattice structure is not visible in the measured
scatter plot in Fig. 1(b), in general, regularities exist in every
output sequence from PNs [50], including CTGs [42]. Since
hidden correlations and lattice structures between PNs can com-
promise simulation results [51], the important issue is to de-
termine if an application is sensitive to the particular regular-
ities and would thus yield biased results. If the structure of the
output sequence of a linear PNG is too regular, then one may
use nonlinear PNGs [41] or combine a linear PNG with a long
period with a nonlinear PNG to reduce the regularity. Empir-
ical tests have shown that combined linear-nonlinear PNGs are
more robust than linear ones [52] and remain useful for longer
sequences than linear PNGs [39], [45]. However, the main draw-
back of nonlinear PNGs is that they are considerably slower
than linear ones, which may make them unacceptable for very
long-running MC simulations.

While the randomness of the PNs impacts the normality of
the generated Gaussian distribution, the precisions of and

limit the range of the generated GVs. Since , the
maximum absolute value of a GV beyond 1.0 is determined by
the function . We will show in Section IV that the precision
of is less critical and so the values can use a smaller
bitwidth. Assume that is represented in the unsigned
fixed-point format , where is the word length. The
closer the value of is to 0, the larger is the precision that
is required for (i.e., the larger the ), the greater is the
value of and, therefore, the greater is the range of the
generated GVs. One way to ensure that the absolute value
of the generated GVs is greater than or equal to , for some
desired factor , is to choose the precision of to be large
enough so that . One can readily verify that
for 32-bit precision in , can be obtained. Table IV
presents the maximum representable value of , namely

, for various precisions of .

IV. APPROXIMATING AND FUNCTIONS

The logarithm and square root operations required in
can be computed using various techniques such as iterative pro-
cedures and series expansions [33], [53]. The execution times
of the iterative procedures grow logarithmically or linearly with
the precision of [33]. Consequently, for the high precision
PNs that are required to generate GVs well into the tails of
the Gaussian distribution, the output rate can be relatively slow
[18]. On the other hand, using a series expansion to calculate
logarithms may result in unacceptable PDF accuracy if an in-
sufficient number of terms of the Taylor series is included [6].
To avoid these limitations, we adopted a polynomial curve fit-
ting approach [21] to approximate between (0,1). In this
application, a polynomial approximation represents the contin-
uous function with a polynomial
of finite degree over an interval . The various common
curve fitting algorithms, such as linear or cubic interpolations or

Fig. 2. (a) Plot of f(u ) = �2 ln(u ). (b) Nonlinear behavior of f(u ) in
the vicinity of u = 1.

rational polynomial interpolations, differ from each other with
respect to the computational complexity and the residual error,
which is given by

(1)

where denotes a suitable norm [21]. A maximum likelihood
estimate of the polynomial coefficients can be obtained using the
orthogonal least squares fit (OLSF) method [54], which mini-
mizes the value of , where denotes the maximum
perpendicular distance from the th point on the polynomial to
the point on . Due to the nonlinear shape of , a rela-
tively high-degree single polynomial is required to approximate

accurately over the full interval (0,1). Instead, to increase
the speed of the computation, the (0,1) interval can be divided
into several segments bounded at a set of points called joints.
The value of within each segment can then be approximated
more efficiently using separate spline functions. The fewer the
segments, the higher the degree of the polynomial that is required
to approximate within each segment. One can thus trade off
the order of the polynomial against the number of segments. The
polynomial degree directly affects the residual error (including
the approximation error and computation error), hardware com-
plexity, memory and functional resource utilization (e.g., a de-
gree polynomial requires multipliers and adders), and la-
tency. A more compact implementation could be obtained using
time-shared hardware, but the latency would be increased.

Appropriate segmentation is crucial to the quality of the re-
sulting GVG. The optimal partitioning into segments primarily
depends on the nonlinear shape of the function and also the max-
imum required polynomial degree for each segment. Although
any choice of segment boundaries can easily be implemented in
a software simulation, some choices imply overly complex de-
coding circuitry and are thus undesirable for high-speed GVG
realization. As shown in Fig. 2, the function has two
high-slope regions: in the vicinity of (which impacts
the value of GVs in the tail) and close to (which impacts
the value of GVs in the middle of the distribution). Since a small
input change may lead to a (very) large output change, the input
domains near 0 and 1 need smaller segments than the relatively
linear regions in the middle of the domain.

Different nonuniform segmentation schemes were already
proposed in [10] and [12]. In [10], only the nonlinear region
close to 0 is segmented nonuniformly and it utilizes on-chip
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Fig. 3. Hybrid (logarithmic and uniform) segmentation of u 2 (0; 1).

memory to store the precomputed values of in memory.
The GVG released by Xilinx [8] appears to be based on the
GVG design in [10]. However, the analysis in [17] shows that
the accuracy of this GVG degrades at the tails of the PDF for

. The method in [12] uses nonuniform segmentation
in both the regions close to and and uses a
piecewise linear approximation for more accurately computing

within each segment. The central limit theorem (CLT)
[29], [37] was exploited in both [10] and [12] to improve the
statistics of the resulting distribution by averaging the output
of multiple GVs. The quality of the GVG in [12] was improved
in [19] by utilizing a more accurate approximation scheme
that increases the quality of the generated GVs further into the
tails. In [19], rather than approximating the nonlinear function

, the square root and logarithm functions
are evaluated separately.

We propose a hybrid segmentation scheme in which (sim-
ilar to [55] but without requiring the CLT stage) both loga-
rithmic and uniform segmentations are utilized. First, the do-
main (0,1) of is divided into two subintervals
and . Let be represented as an unsigned fixed-
point number with 32 bits of precision. The value, 0 or
1, of the most significant bit (MSB) of indicates whether a
particular resides in subinterval or , respectively. Subin-
terval is then segmented logarithmically into seg-
ments from 0.5 down to 0, as shown in Fig. 3. Subinterval

is segmented similarly from 0.5 up to 1. Clearly, the
number of logarithmic segments is limited
by the precision of . Each segment will be denoted by ,
where binary subscript specifies the half range ( or ) and
denotes the logarithmic segment number .
Then, each segment is subdivided uniformly into
subsegments where each subsegment is denoted by . Note
that if one of the segments, where to

is addressed, then does not have sufficient
bits to address the uniform segments within . To support
this scheme, we need to use -bit precision for . The
number of uniform segments depends on the desired accuracy
and on the size of memory that is available to store the coeffi-
cients of polynomials. Note that since approx-
imating close to impacts the error in the center
of the generated distribution and approximating close to

Fig. 4. Absolute approximation error of f(�) for different numbers of uniform
segments.

impacts the error at the tails of the distribution, the hy-
brid segmentation scheme considers both regions carefully by
logarithmic and uniform segmentation to achieve an accurate
overall approximation for . Fig. 4 plots on a logarithmic
scale the resulting absolute error when approximating using

for three different numbers of uniform segments
4, 8, 16. Fig. 4 shows that for and there is rela-
tively little degradation in the accuracy of .

After segmentation, the coefficients of the polynomials for ap-
proximating within different segments are
calculated and optimized using the OLSF method to minimize
the residual error. An important point to note is that as ap-
proaches from above (for the nonlinear region just above

) or when approaches from below (for
the nonlinear region just below ), the slope
tends toward infinity and, therefore, the coefficients of
become very large. However, the value of lies within (0,

). For example, for a 32-bit representation of
, the coefficients of are of the order of 2 but the value

of lies in [0,6.66], which can be represented relatively
accurately in two’s complement 16-bit fixed-point format with
a 12-bit fraction, i.e., in . Storing the large coefficient
values of on-chip requires large memories, increases the
hardware complexity and may slow down the variate generation
rate. To overcome these problems, [12] proposed to trade off pre-
cision for range and store scaling factors (multiples of two) along
with the coefficients into an on-chip memory. While scaling is
performed dynamically in [12], we propose a different scaling
method that can also be used statically (i.e., at design synthesis
time). Using this method, only the adjusted coefficients of ,
for all segments are stored in on-chip memory. This
scheme reduces the memory requirements, decreases the hard-
ware complexity, and maintains the accuracy of the computation.

For clarity, we explain the scaling method assuming that
each segment is approximated using a first-degree polynomial

. However, the scaling scheme is inde-
pendent of the number of logarithmic segments and the order of
the polynomial. When lies within and in segment , a
new scaled variable is defined as . To compen-
sate for the scaling of , the slope of segment is
shifted to the right bit positions as . Thus,
the largest slope values are scaled down by a factor of .
When lies within , to scale the slopes and intercepts of

accurately, the variable is transformed to a new variable
. Thus, as , . Similar to the

procedure for region , when resides in segment , the
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Fig. 5. Absolute value of the approximation error of f(�) for two different
quantization formats.

large value of can be scaled down by and can
be adjusted as .

According to the value of , an addressing unit (AU) is re-
quired to calculate the scaled value of , namely . The AU
also identifies the subinterval , the segment number , and
the sub-segment number . Then the scaled coefficients of
can be addressed and read directly from memory to approximate

. When resides in segment , will be com-
puted as

(2)

When resides in segment , then will be computed
as

(3)

Using the scaled coefficients and , the computations in (2)
and (3) are representable using 16-bit fixed-point numbers. For
example, an experimental range analysis of the values of
and for a first-degree polynomial approximation within
each segment shows that these values can be represented within
16 bits with and , respectively. Fig. 5 plots
over a logarithmic scale the absolute value of the approxima-
tion error for using and for two different
quantization formats. The relatively similar values of the mean
and maximum errors demonstrates the effectiveness of our seg-
mentation scheme in equally limiting the approximation error
over the range of .

There are various standard approaches for approximating
trigonometric functions such as CORDIC algorithms [56],
polynomial approximations, and various table lookup schemes
(e.g., direct table lookup and multipartite techniques [57]). The
choice of a method and a particular implementation depends
on such requirements as throughput, latency, and area as well
as the required accuracy. The accuracy is determined by the
error of the approximation and by the roundoff errors that occur
during the evaluation of the approximation.

Storing and later retrieving quantized values of the trigono-
metric function in an on-chip memory, so-called table lookup,
is relatively fast, but the approximation accuracy is limited by
the size of the on-chip memory. What is more, the size of the
memory grows exponentially with the size of the input word,
which confines this solution to relatively small input precisions
(i.e., 12 bits). In the present application the table size can be
reduced by exploiting the symmetry properties of the and

functions and then storing only a quarter cycle of the
trigonometric function in memory.

Fig. 6. Sine approximation errors using table lookup and linear interpolation.

Fig. 7. Dataflow diagram for computing p(~u ).

Another scheme that may require less memory, compared
to table lookup but with similar accuracy, is to use linear (or
higher order) interpolation. For example, Synopsys Inc. pro-
vides a trigonometric Intellectual Property (IP) core to compute

by segmenting the quarter cycle into 64 straight-line
segments [58]. Fig. 6 plots the squared error of the table lookup
method with 1024 segments over the quarter cycle along with
the one for the linear interpolation method with 64 segments
over the quarter cycle. Fig. 6 shows that the mean-squared er-
rors (MSEs) of these two schemes, when implemented using
16-bit fixed-point format, are relatively close.

V. REALIZATION OF THE GVG

Fig. 7 shows (on the left) a dataflow diagram illustrating
the evaluation of in its factored form and (on the right)
the corresponding hardware datapath. The core of the GVG
contains pipelined fixed-point multipliers, adders, registers,
and routing resources. The operations are fully pipelined and
scheduled to maximize the output rate. To form the PNG, we
used 32- and 64-bit CTGs [59], [60] that can be implemented
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TABLE V
PERFORMANCE OF THREE CTGS IMPLEMENTED ON THE XILINX VIRTEX-II

XC2V4000-6

using only shift and bitwise logical operations [48], [61].
The characteristics of three CTGs implemented on the Xilinx
Virtex-II XC2V4000-6 are compared in Table V. To determine
the segment number of a given PN input , the AU uses
a small leading ones detector (LOD) circuit [62]. The LOD
requires 57 and 122 slices for a 32- and 64-bit , respectively,
on a Virtex-II XC2V4000-6 FPGA. For a 32-bit , the AU
requires 226 configurable slices while it requires 511 slices for
a 64-bit . The AU operates at 275 MHz for both the 32- and
64-bit . The generated triple from the AU is used to
address the coefficient memory. For (thus
62 logarithmic segments in both the and regions) and

uniform segments within each logarithmic segment, one
BlockRAM is required to store the 992 scaled
coefficients and in the 16-bit fixed-point formats

and , respectively.
The important feature of the proposed approximation strategy

is that due to the efficiency of the hybrid segmentation and
scaling scheme, the dataflow diagram for computing can
be implemented using only 16-bit fixed-point variables, almost
independent of the desired tail accuracy. In fact, the precision
of and the size of the coefficient memory can always be ad-
justed to generate GVs with various tail accuracies using the
same 16-bit datapath. To do this, only the PNG and AU must
be modified slightly, and the coefficient memories configured
correspondingly. While five bits are required to represent the
integer part of generated GVs up to , 11 bits are dedicated
to the fractional part to represent GVs in two’s complement
format. Fortunately, the 16-bit GV format tends to be a common
precision for many digital signal processing applications. The
Xilinx AWGN core [8] also uses the 16-bit fixed-point format.

To approximate and , the quarter cycle of the
sine function is partitioned into 1024 uniform segments. The
precomputed values in fixed-point format are stored
in a dual-port memory block. Using the symmetry of the sine
and cosine functions, and can then be approx-
imated compactly. The table lookup scheme not only provides
smaller and faster implementation (as shown in Table VI), it also
has relatively small MSE, as discussed in Section IV. The cal-
culated is then multiplied by and
to generate two GVs in the fixed-point format .

Table VII summarizes the implementation results for the new
GVG on three different FPGAs, utilizing first-degree approxi-
mations. The results in Table VII show that the output rate of the
proposed GVG is independent of the tail accuracy. In fact, the
design can be configured to achieve higher tail accuracy with
only a small cost in extra hardware. Moreover, if there are suf-
ficient resources available on the FPGA beyond those required

TABLE VI
CHARACTERISTICS OF TWO DIFFERENT IMPLEMENTATIONS OF BOTH g (u )

AND g (u ) ON A XILINX VIRTEX-II XC2V4000-6 FPGA

Design I uses a table lookup scheme. To approximate sin(2�u ) and

cos(2�u ), the quarter cycle is partitioned into 1024 uniform segments.

Design II segments sine and cosine waveforms each into 256 uniform

segments and use linear interpolation to approximate their values over

(0; 2�). The coefficients of each segment in fixed-point format Q(16; 12)

are stored in one dual-port memory block.

A faster implementation of this design can run at 250 MHz while requires

144 slices.

TABLE VII
TYPICAL REALIZATIONS OF THE PROPOSED GVG

Design I was synthesized for a Xilinx Virtex-II Pro XC2VP100-6 FPGA.

Designs II and III were synthesized for a Xilinx Virtex-II XC2V4000-6

FPGA. Design IV was synthesized for an Altera StratixII EP2S180F1508C4

FPGA.

Fig. 8. 0.126-mm GVG chip layout in 90-nm CMOS technology.

by a single GVG datapath, then multiple instances of the same
GVG datapath, with different initial seeds for the PNGs, could
be readily instantiated to speed up the total GV generation rate.

Fig. 8 shows the layout of the 0.126-mm GVG chip de-
signed in a 90-nm CMOS technology using a dual-threshold
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Fig. 9. Gaussian PDF compared with the PDF of 10 generated GVs.

standard cell library. The core area is dominated by the coef-
ficient ROM and the dual-port sine ROM. Without access to a
commercial ROM core generator, we implemented the ROM
array using standard cells. Custom ROM blocks would signifi-
cantly reduce the required area. The unlabeled area in the core
layout is occupied by two-stage pipelined multipliers, adders,
registers and routing resources. The core operates at 537 MHz,
generating over one billion GVs per second while dissipating
12.3 mW of dynamic power. The static power dissipation was
estimated to be 9.91 mW. This core has been implemented
successfully in silicon in a 500-Mb/s one-half rate low-density
parity-check convolution decoder [63] to permit measurements
of BER versus SNR at-speed and on-chip.

VI. GVG STATISTICAL TESTS

Normality tests are well-known statistical measures used to
determine if generated GVs fit the expected normal distribution
[64]. The power of statistical tests for different characteristics
of the normal distribution varies depending on the nature of any
deviations from ideal normality.

Since the tail of the Gaussian PDF is not visible on the linear
scale, Fig. 9 superimposes the PDF of 10 generated GVs on
top of a PDF plot of the exact normal distribution using a log-
arithmic scale. The two plots are indistinguishable over .
To generate the GVs at the extreme tails of the distribution, say
where , at least 10 samples are required
to accurately measure the PDF, which takes a prohibitively long
time. Instead, the PDF of the Gaussian variable , , can
be expressed in terms of its CDF, . Note that the PDF can
be written as

(4)

The “importance sampling” expression can be written using
Bayes’ law as

(5)

Fig. 10. Gaussian PDF compared with the PDF of the 5� 10 generated GVs
for 6 � jnj � 8.

Fig. 11. Gaussian PDF compared with PDF of the 5� 10 generated GVs for
8 � jnj � 9:4.

To measure the PDF in the tails of the distribution, GVs such
that are first generated. The PDF of the generated
GVs can then be given as

(6)

In this method, we do not generate and, therefore,
the second term of (5) approaches 0. Using this method, we
divided the to region into two sub-regions, from to

and from to , and then generated GVs. The
theoretical Gaussian PDF is compared on a logarithmic scale in
Figs. 10 and 11 with the PDF of generated GVs at the very end
of the Gaussian distribution tails.

The Pearson Chi-Square test can be utilized to determine the
normality of generated GVs with a desired significance level
[64]. The Chi-Square test involves quantizing the horizontal axis
of the PDF into cells. The statistic can be calculated
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TABLE VIII
� -TEST SIMULATION RESULTS

based on the actual and expected number of samples appearing
in each cell and serves as an overall quality metric as follows:

where is the number of generated GVs. is a Chi-Square
random variable with degrees of freedom (DOF) [64].
For each cell , is the number of samples observed in the
bin and is the expected number of samples according to
the normal distribution. Since a normal distribution is completely
specified by two measures, the mean and the standard deviation,
the number of DOF is reduced by 2 from to [65].
To perform the Chi-Square test on the generated GVs, we di-
vided the horizontal axis of the PDF into four regions, as given
in Table VIII, and segmented each interval into 100 bins and en-
sured that at least 50 GVs fall into each bin. The Chi-Square
test is passed if the calculated is smaller than a given
threshold. Table VIII shows that the designed GVG successfully
passes the Chi-Square test, even for stringent values of the signif-
icance level. For more details on the Chi-Square test please refer
to [64]. The Anderson-Darling statistic test enhances the sensi-
tivity of the statistic in the distribution tails. The test statistic
for a normal distribution can be calculated numerically as [64]

where is the standard normal CDF and are the or-
dered generated GVs. Since the measured parameter of

was less than the critical value of 0.752,
we can again accept the normality hypothesis for our GVG.

To evaluate the correlation among subsequently generated
GVs, a sequence containing 10 variates generated by our GVG
was subjected to the linear Pearson’s correlation test. No regular
lattice structure was apparent, as shown in Fig. 12. Fig. 13 plots
the autocorrelation values over the range of lags 2048 for 10
generated GVs. The approximated 95% confidence interval for
the calculated autocorrelation was at . The auto-
correlation is evidently very low for all nonzero lags.

To evaluate the accuracy of the design in a BER simulation,
the GVG core was instantiated in a communication system with
BPSK signaling over an AWGN channel. Fig. 14 plots the the-
oretical BER against the generated simulation result using our
GVG. For the sake of comparison, we implemented a GVG based
on the CLT using a summation of 12 uniform PNs [37]. This plot
shows that the use of an inaccurate GVG may lead to inaccurate
simulation results. Specifically, at the inaccurate

Fig. 12. 2-D scatter plot of 10 generated GVs.

Fig. 13. Estimated autocorrelation for 10 generated GVs.

Fig. 14. Application of the GVG in BER simulation of a BPSK modulated
communication system over an AWGN channel.

Gaussian noise results in an almost 2-dB shift in the measured
BER, and the shift gets worse at higher values of .
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VII. CONCLUSION

In this paper, a fast and compact GVG was described that has
a faster Gaussian variate generation rate, with a lower hardware
cost, and generates Gaussian samples up to values larger than
published designs (as summarized in Tables I, II, and VII). The
functions required by the BM method were approximated using
polynomial curve fitting, hybrid segmentation (i.e., combination
of logarithmic and uniform segmentation), and a scaling scheme
to maintain the accuracy of approximation. The scaling scheme
is independent of the number of segments and the order of the
polynomial. The polynomial coefficients are scaled at synthesis
time to reduce the memory requirements, decrease the hardware
complexity, and maintain the accuracy of the computation. The
dataflow diagram of the GVG can be implemented using 16-bit
fixed-point variables to generate GVs in format for
arbitrary tail ranges of up to . The synthesizable GVG core
can be easily configured to generate GVs in two’s complement
fixed-point format for larger tail values at a small cost in extra
hardware, without degrading the sample rate (see Table VII).
A typical instantiation of the proposed GVG uses only 1.3%
of the Xilinx Virtex-II Pro XC2VP100-6 FPGA, two on-chip
block memories, and three dedicated multipliers and operates
at 269 MHz, generating 538 million GVs per second within up
to . The implementation costs and performance were il-
lustrated by typical realizations for FPGAs and a 90-nm CMOS
ASIC. The proposed GVG should therefore be of significant as-
sistance in the characterization of low-BER systems.
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